Metamath Proof Explorer


Theorem dmgmaddn0

Description: If A is not a nonpositive integer, then A + N is nonzero for any nonnegative integer N . (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion dmgmaddn0 A N 0 A + N 0

Proof

Step Hyp Ref Expression
1 eldmgm A A ¬ A 0
2 1 simprbi A ¬ A 0
3 2 adantr A N 0 ¬ A 0
4 df-neg A = 0 A
5 4 eqeq1i A = N 0 A = N
6 0cnd A N 0 0
7 eldifi A A
8 7 adantr A N 0 A
9 nn0cn N 0 N
10 9 adantl A N 0 N
11 6 8 10 subaddd A N 0 0 A = N A + N = 0
12 5 11 syl5bb A N 0 A = N A + N = 0
13 simpr A N 0 N 0
14 eleq1 A = N A 0 N 0
15 13 14 syl5ibrcom A N 0 A = N A 0
16 12 15 sylbird A N 0 A + N = 0 A 0
17 16 necon3bd A N 0 ¬ A 0 A + N 0
18 3 17 mpd A N 0 A + N 0