Metamath Proof Explorer


Theorem dmgmaddn0

Description: If A is not a nonpositive integer, then A + N is nonzero for any nonnegative integer N . (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion dmgmaddn0 AN0A+N0

Proof

Step Hyp Ref Expression
1 eldmgm AA¬A0
2 1 simprbi A¬A0
3 2 adantr AN0¬A0
4 df-neg A=0A
5 4 eqeq1i A=N0A=N
6 0cnd AN00
7 eldifi AA
8 7 adantr AN0A
9 nn0cn N0N
10 9 adantl AN0N
11 6 8 10 subaddd AN00A=NA+N=0
12 5 11 bitrid AN0A=NA+N=0
13 simpr AN0N0
14 eleq1 A=NA0N0
15 13 14 syl5ibrcom AN0A=NA0
16 12 15 sylbird AN0A+N=0A0
17 16 necon3bd AN0¬A0A+N0
18 3 17 mpd AN0A+N0