Metamath Proof Explorer


Theorem dmmpossx2

Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis dmmpossx2.1 F=xA,yBC
Assertion dmmpossx2 domFyBA×y

Proof

Step Hyp Ref Expression
1 dmmpossx2.1 F=xA,yBC
2 nfcv _uA
3 nfcsb1v _yu/yA
4 nfcv _uC
5 nfcv _vC
6 nfcv _xu
7 nfcsb1v _xv/xC
8 6 7 nfcsbw _xu/yv/xC
9 nfcsb1v _yu/yv/xC
10 csbeq1a y=uA=u/yA
11 csbeq1a x=vC=v/xC
12 csbeq1a y=uv/xC=u/yv/xC
13 11 12 sylan9eqr y=ux=vC=u/yv/xC
14 2 3 4 5 8 9 10 13 cbvmpox2 xA,yBC=vu/yA,uBu/yv/xC
15 vex vV
16 vex uV
17 15 16 op2ndd t=vu2ndt=u
18 17 csbeq1d t=vu2ndt/y1stt/xC=u/y1stt/xC
19 15 16 op1std t=vu1stt=v
20 19 csbeq1d t=vu1stt/xC=v/xC
21 20 csbeq2dv t=vuu/y1stt/xC=u/yv/xC
22 18 21 eqtrd t=vu2ndt/y1stt/xC=u/yv/xC
23 22 mpomptx2 tuBu/yA×u2ndt/y1stt/xC=vu/yA,uBu/yv/xC
24 14 1 23 3eqtr4i F=tuBu/yA×u2ndt/y1stt/xC
25 24 dmmptss domFuBu/yA×u
26 nfcv _uA×y
27 nfcv _yu
28 3 27 nfxp _yu/yA×u
29 sneq y=uy=u
30 10 29 xpeq12d y=uA×y=u/yA×u
31 26 28 30 cbviun yBA×y=uBu/yA×u
32 25 31 sseqtrri domFyBA×y