Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dnibndlem3.1 | |
|
dnibndlem3.2 | |
||
dnibndlem3.3 | |
||
dnibndlem3.4 | |
||
Assertion | dnibndlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem3.1 | |
|
2 | dnibndlem3.2 | |
|
3 | dnibndlem3.3 | |
|
4 | dnibndlem3.4 | |
|
5 | 3 | recnd | |
6 | halfre | |
|
7 | 6 | a1i | |
8 | 3 7 | jca | |
9 | readdcl | |
|
10 | 8 9 | syl | |
11 | reflcl | |
|
12 | 10 11 | syl | |
13 | 12 | recnd | |
14 | halfcn | |
|
15 | 14 | a1i | |
16 | 13 15 | subcld | |
17 | 2 | recnd | |
18 | 5 16 17 | 3jca | |
19 | npncan | |
|
20 | 18 19 | syl | |
21 | 20 | eqcomd | |
22 | 4 | oveq1d | |
23 | 2 7 | jca | |
24 | readdcl | |
|
25 | 23 24 | syl | |
26 | reflcl | |
|
27 | 25 26 | syl | |
28 | 27 | recnd | |
29 | 1cnd | |
|
30 | 28 29 15 | 3jca | |
31 | addsubass | |
|
32 | 30 31 | syl | |
33 | 1mhlfehlf | |
|
34 | 33 | a1i | |
35 | 34 | oveq2d | |
36 | 22 32 35 | 3eqtrd | |
37 | 36 | oveq1d | |
38 | 37 | oveq2d | |
39 | 21 38 | eqtrd | |
40 | 39 | fveq2d | |