Metamath Proof Explorer


Theorem dnibndlem3

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem3.1 T=xx+12x
dnibndlem3.2 φA
dnibndlem3.3 φB
dnibndlem3.4 φB+12=A+12+1
Assertion dnibndlem3 φBA=BB+1212+A+12+12-A

Proof

Step Hyp Ref Expression
1 dnibndlem3.1 T=xx+12x
2 dnibndlem3.2 φA
3 dnibndlem3.3 φB
4 dnibndlem3.4 φB+12=A+12+1
5 3 recnd φB
6 halfre 12
7 6 a1i φ12
8 3 7 jca φB12
9 readdcl B12B+12
10 8 9 syl φB+12
11 reflcl B+12B+12
12 10 11 syl φB+12
13 12 recnd φB+12
14 halfcn 12
15 14 a1i φ12
16 13 15 subcld φB+1212
17 2 recnd φA
18 5 16 17 3jca φBB+1212A
19 npncan BB+1212ABB+1212+B+1212-A=BA
20 18 19 syl φBB+1212+B+1212-A=BA
21 20 eqcomd φBA=BB+1212+B+1212-A
22 4 oveq1d φB+1212=A+12+1-12
23 2 7 jca φA12
24 readdcl A12A+12
25 23 24 syl φA+12
26 reflcl A+12A+12
27 25 26 syl φA+12
28 27 recnd φA+12
29 1cnd φ1
30 28 29 15 3jca φA+12112
31 addsubass A+12112A+12+1-12=A+12+1-12
32 30 31 syl φA+12+1-12=A+12+1-12
33 1mhlfehlf 112=12
34 33 a1i φ112=12
35 34 oveq2d φA+12+1-12=A+12+12
36 22 32 35 3eqtrd φB+1212=A+12+12
37 36 oveq1d φB+12-12-A=A+12+12-A
38 37 oveq2d φBB+1212+B+1212-A=BB+1212+A+12+12-A
39 21 38 eqtrd φBA=BB+1212+A+12+12-A
40 39 fveq2d φBA=BB+1212+A+12+12-A