| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochsscl.h |  | 
						
							| 2 |  | dochsscl.u |  | 
						
							| 3 |  | dochsscl.v |  | 
						
							| 4 |  | dochsscl.i |  | 
						
							| 5 |  | dochsscl.o |  | 
						
							| 6 |  | dochsscl.k |  | 
						
							| 7 |  | dochsscl.x |  | 
						
							| 8 |  | dochsscl.y |  | 
						
							| 9 | 6 | adantr |  | 
						
							| 10 | 7 | adantr |  | 
						
							| 11 | 1 2 3 5 | dochssv |  | 
						
							| 12 | 9 10 11 | syl2anc |  | 
						
							| 13 | 1 2 4 3 | dihrnss |  | 
						
							| 14 | 6 8 13 | syl2anc |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 1 2 3 5 | dochss |  | 
						
							| 18 | 9 15 16 17 | syl3anc |  | 
						
							| 19 | 1 2 3 5 | dochss |  | 
						
							| 20 | 9 12 18 19 | syl3anc |  | 
						
							| 21 | 8 | adantr |  | 
						
							| 22 | 1 4 5 | dochoc |  | 
						
							| 23 | 9 21 22 | syl2anc |  | 
						
							| 24 | 20 23 | sseqtrd |  | 
						
							| 25 | 1 2 3 5 | dochocss |  | 
						
							| 26 | 6 7 25 | syl2anc |  | 
						
							| 27 |  | sstr |  | 
						
							| 28 | 26 27 | sylan |  | 
						
							| 29 | 24 28 | impbida |  |