Metamath Proof Explorer


Theorem dochval

Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochval.b B=BaseK
dochval.g G=glbK
dochval.o ˙=ocK
dochval.h H=LHypK
dochval.i I=DIsoHKW
dochval.u U=DVecHKW
dochval.v V=BaseU
dochval.n N=ocHKW
Assertion dochval KYWHXVNX=I˙GyB|XIy

Proof

Step Hyp Ref Expression
1 dochval.b B=BaseK
2 dochval.g G=glbK
3 dochval.o ˙=ocK
4 dochval.h H=LHypK
5 dochval.i I=DIsoHKW
6 dochval.u U=DVecHKW
7 dochval.v V=BaseU
8 dochval.n N=ocHKW
9 1 2 3 4 5 6 7 8 dochfval KYWHN=x𝒫VI˙GyB|xIy
10 9 adantr KYWHXVN=x𝒫VI˙GyB|xIy
11 10 fveq1d KYWHXVNX=x𝒫VI˙GyB|xIyX
12 7 fvexi VV
13 12 elpw2 X𝒫VXV
14 13 biimpri XVX𝒫V
15 14 adantl KYWHXVX𝒫V
16 fvex I˙GyB|XIyV
17 sseq1 x=XxIyXIy
18 17 rabbidv x=XyB|xIy=yB|XIy
19 18 fveq2d x=XGyB|xIy=GyB|XIy
20 19 fveq2d x=X˙GyB|xIy=˙GyB|XIy
21 20 fveq2d x=XI˙GyB|xIy=I˙GyB|XIy
22 eqid x𝒫VI˙GyB|xIy=x𝒫VI˙GyB|xIy
23 21 22 fvmptg X𝒫VI˙GyB|XIyVx𝒫VI˙GyB|xIyX=I˙GyB|XIy
24 15 16 23 sylancl KYWHXVx𝒫VI˙GyB|xIyX=I˙GyB|XIy
25 11 24 eqtrd KYWHXVNX=I˙GyB|XIy