Metamath Proof Explorer


Theorem drgext0gsca

Description: The additive neutral element of the scalar field of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B=subringAlgEU
drgext.1 φEDivRing
drgext.2 φUSubRingE
Assertion drgext0gsca φ0B=0ScalarB

Proof

Step Hyp Ref Expression
1 drgext.b B=subringAlgEU
2 drgext.1 φEDivRing
3 drgext.2 φUSubRingE
4 drngring EDivRingERing
5 ringmnd ERingEMnd
6 2 4 5 3syl φEMnd
7 subrgsubg USubRingEUSubGrpE
8 eqid 0E=0E
9 8 subg0cl USubGrpE0EU
10 3 7 9 3syl φ0EU
11 eqid BaseE=BaseE
12 11 subrgss USubRingEUBaseE
13 3 12 syl φUBaseE
14 eqid E𝑠U=E𝑠U
15 14 11 8 ress0g EMnd0EUUBaseE0E=0E𝑠U
16 6 10 13 15 syl3anc φ0E=0E𝑠U
17 1 2 3 drgext0g φ0E=0B
18 1 a1i φB=subringAlgEU
19 18 13 srasca φE𝑠U=ScalarB
20 19 fveq2d φ0E𝑠U=0ScalarB
21 16 17 20 3eqtr3d φ0B=0ScalarB