Metamath Proof Explorer


Theorem drngmxidl

Description: The zero ideal is the only ideal of a division ring. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypothesis drngmxidl.1 0˙=0R
Assertion drngmxidl Could not format assertion : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) = { { .0. } } ) with typecode |-

Proof

Step Hyp Ref Expression
1 drngmxidl.1 0˙=0R
2 drngring RDivRingRRing
3 eqid BaseR=BaseR
4 3 mxidlidl Could not format ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) with typecode |-
5 4 ex Could not format ( R e. Ring -> ( i e. ( MaxIdeal ` R ) -> i e. ( LIdeal ` R ) ) ) : No typesetting found for |- ( R e. Ring -> ( i e. ( MaxIdeal ` R ) -> i e. ( LIdeal ` R ) ) ) with typecode |-
6 5 ssrdv Could not format ( R e. Ring -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-
7 2 6 syl Could not format ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( LIdeal ` R ) ) with typecode |-
8 eqid LIdealR=LIdealR
9 3 1 8 drngnidl RDivRingLIdealR=0˙BaseR
10 7 9 sseqtrd Could not format ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } ) : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } ) with typecode |-
11 3 mxidlnr Could not format ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) with typecode |-
12 2 11 sylan Could not format ( ( R e. DivRing /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) : No typesetting found for |- ( ( R e. DivRing /\ i e. ( MaxIdeal ` R ) ) -> i =/= ( Base ` R ) ) with typecode |-
13 12 nelrdva Could not format ( R e. DivRing -> -. ( Base ` R ) e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( R e. DivRing -> -. ( Base ` R ) e. ( MaxIdeal ` R ) ) with typecode |-
14 ssdifsn Could not format ( ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) <-> ( ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } /\ -. ( Base ` R ) e. ( MaxIdeal ` R ) ) ) : No typesetting found for |- ( ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) <-> ( ( MaxIdeal ` R ) C_ { { .0. } , ( Base ` R ) } /\ -. ( Base ` R ) e. ( MaxIdeal ` R ) ) ) with typecode |-
15 10 13 14 sylanbrc Could not format ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) ) : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) C_ ( { { .0. } , ( Base ` R ) } \ { ( Base ` R ) } ) ) with typecode |-
16 drngnzr RDivRingRNzRing
17 1 3 drnglidl1ne0 RNzRingBaseR0˙
18 17 necomd RNzRing0˙BaseR
19 difprsn2 0˙BaseR0˙BaseRBaseR=0˙
20 16 18 19 3syl RDivRing0˙BaseRBaseR=0˙
21 15 20 sseqtrd Could not format ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } } ) : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) C_ { { .0. } } ) with typecode |-
22 1 drng0mxidl Could not format ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( R e. DivRing -> { .0. } e. ( MaxIdeal ` R ) ) with typecode |-
23 22 snssd Could not format ( R e. DivRing -> { { .0. } } C_ ( MaxIdeal ` R ) ) : No typesetting found for |- ( R e. DivRing -> { { .0. } } C_ ( MaxIdeal ` R ) ) with typecode |-
24 21 23 eqssd Could not format ( R e. DivRing -> ( MaxIdeal ` R ) = { { .0. } } ) : No typesetting found for |- ( R e. DivRing -> ( MaxIdeal ` R ) = { { .0. } } ) with typecode |-