Metamath Proof Explorer


Theorem dsmmbas2

Description: Base set of the direct sum module using the fndmin abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses dsmmbas2.p P=S𝑠R
dsmmbas2.b B=fBaseP|domf0𝑔RFin
Assertion dsmmbas2 RFnIIVB=BaseSmR

Proof

Step Hyp Ref Expression
1 dsmmbas2.p P=S𝑠R
2 dsmmbas2.b B=fBaseP|domf0𝑔RFin
3 1 fveq2i BaseP=BaseS𝑠R
4 3 rabeqi fBaseP|domf0𝑔RFin=fBaseS𝑠R|domf0𝑔RFin
5 simpll RFnIIVfBaseS𝑠RRFnI
6 fvco2 RFnIxI0𝑔Rx=0Rx
7 5 6 sylan RFnIIVfBaseS𝑠RxI0𝑔Rx=0Rx
8 7 neeq2d RFnIIVfBaseS𝑠RxIfx0𝑔Rxfx0Rx
9 8 rabbidva RFnIIVfBaseS𝑠RxI|fx0𝑔Rx=xI|fx0Rx
10 eqid S𝑠R=S𝑠R
11 eqid BaseS𝑠R=BaseS𝑠R
12 reldmprds Reldom𝑠
13 10 11 12 strov2rcl fBaseS𝑠RSV
14 13 adantl RFnIIVfBaseS𝑠RSV
15 simplr RFnIIVfBaseS𝑠RIV
16 simpr RFnIIVfBaseS𝑠RfBaseS𝑠R
17 10 11 14 15 5 16 prdsbasfn RFnIIVfBaseS𝑠RfFnI
18 fn0g 0𝑔FnV
19 dffn2 0𝑔FnV0𝑔:VV
20 18 19 mpbi 0𝑔:VV
21 dffn2 RFnIR:IV
22 21 biimpi RFnIR:IV
23 fco 0𝑔:VVR:IV0𝑔R:IV
24 20 22 23 sylancr RFnI0𝑔R:IV
25 24 ffnd RFnI0𝑔RFnI
26 5 25 syl RFnIIVfBaseS𝑠R0𝑔RFnI
27 fndmdif fFnI0𝑔RFnIdomf0𝑔R=xI|fx0𝑔Rx
28 17 26 27 syl2anc RFnIIVfBaseS𝑠Rdomf0𝑔R=xI|fx0𝑔Rx
29 fndm RFnIdomR=I
30 29 rabeqdv RFnIxdomR|fx0Rx=xI|fx0Rx
31 5 30 syl RFnIIVfBaseS𝑠RxdomR|fx0Rx=xI|fx0Rx
32 9 28 31 3eqtr4d RFnIIVfBaseS𝑠Rdomf0𝑔R=xdomR|fx0Rx
33 32 eleq1d RFnIIVfBaseS𝑠Rdomf0𝑔RFinxdomR|fx0RxFin
34 33 rabbidva RFnIIVfBaseS𝑠R|domf0𝑔RFin=fBaseS𝑠R|xdomR|fx0RxFin
35 4 34 eqtrid RFnIIVfBaseP|domf0𝑔RFin=fBaseS𝑠R|xdomR|fx0RxFin
36 fnex RFnIIVRV
37 eqid fBaseS𝑠R|xdomR|fx0RxFin=fBaseS𝑠R|xdomR|fx0RxFin
38 37 dsmmbase RVfBaseS𝑠R|xdomR|fx0RxFin=BaseSmR
39 36 38 syl RFnIIVfBaseS𝑠R|xdomR|fx0RxFin=BaseSmR
40 35 39 eqtrd RFnIIVfBaseP|domf0𝑔RFin=BaseSmR
41 2 40 eqtrid RFnIIVB=BaseSmR