Description: Base set of the direct sum module using the fndmin abbreviation. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dsmmbas2.p | |
|
dsmmbas2.b | |
||
Assertion | dsmmbas2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmbas2.p | |
|
2 | dsmmbas2.b | |
|
3 | 1 | fveq2i | |
4 | 3 | rabeqi | |
5 | simpll | |
|
6 | fvco2 | |
|
7 | 5 6 | sylan | |
8 | 7 | neeq2d | |
9 | 8 | rabbidva | |
10 | eqid | |
|
11 | eqid | |
|
12 | reldmprds | |
|
13 | 10 11 12 | strov2rcl | |
14 | 13 | adantl | |
15 | simplr | |
|
16 | simpr | |
|
17 | 10 11 14 15 5 16 | prdsbasfn | |
18 | fn0g | |
|
19 | dffn2 | |
|
20 | 18 19 | mpbi | |
21 | dffn2 | |
|
22 | 21 | biimpi | |
23 | fco | |
|
24 | 20 22 23 | sylancr | |
25 | 24 | ffnd | |
26 | 5 25 | syl | |
27 | fndmdif | |
|
28 | 17 26 27 | syl2anc | |
29 | fndm | |
|
30 | 29 | rabeqdv | |
31 | 5 30 | syl | |
32 | 9 28 31 | 3eqtr4d | |
33 | 32 | eleq1d | |
34 | 33 | rabbidva | |
35 | 4 34 | eqtrid | |
36 | fnex | |
|
37 | eqid | |
|
38 | 37 | dsmmbase | |
39 | 36 38 | syl | |
40 | 35 39 | eqtrd | |
41 | 2 40 | eqtrid | |