Metamath Proof Explorer


Theorem dva1dim

Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in Crawley p. 120 line 21, but using a non-identity translation (nonzero vector) F whose trace is P rather than P itself; F exists by cdlemf . E is the division ring base by erngdv , and sF is the scalar product by dvavsca . F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013)

Ref Expression
Hypotheses dva1dim.l ˙=K
dva1dim.h H=LHypK
dva1dim.t T=LTrnKW
dva1dim.r R=trLKW
dva1dim.e E=TEndoKW
Assertion dva1dim KHLWHFTg|sEg=sF=gT|Rg˙RF

Proof

Step Hyp Ref Expression
1 dva1dim.l ˙=K
2 dva1dim.h H=LHypK
3 dva1dim.t T=LTrnKW
4 dva1dim.r R=trLKW
5 dva1dim.e E=TEndoKW
6 2 3 5 tendocl KHLWHsEFTsFT
7 1 2 3 4 5 tendotp KHLWHsEFTRsF˙RF
8 6 7 jca KHLWHsEFTsFTRsF˙RF
9 8 3expb KHLWHsEFTsFTRsF˙RF
10 9 anass1rs KHLWHFTsEsFTRsF˙RF
11 eleq1 g=sFgTsFT
12 fveq2 g=sFRg=RsF
13 12 breq1d g=sFRg˙RFRsF˙RF
14 11 13 anbi12d g=sFgTRg˙RFsFTRsF˙RF
15 10 14 syl5ibrcom KHLWHFTsEg=sFgTRg˙RF
16 15 rexlimdva KHLWHFTsEg=sFgTRg˙RF
17 simpll KHLWHFTgTRg˙RFKHLWH
18 simplr KHLWHFTgTRg˙RFFT
19 simprl KHLWHFTgTRg˙RFgT
20 simprr KHLWHFTgTRg˙RFRg˙RF
21 1 2 3 4 5 tendoex KHLWHFTgTRg˙RFsEsF=g
22 17 18 19 20 21 syl121anc KHLWHFTgTRg˙RFsEsF=g
23 eqcom sF=gg=sF
24 23 rexbii sEsF=gsEg=sF
25 22 24 sylib KHLWHFTgTRg˙RFsEg=sF
26 25 ex KHLWHFTgTRg˙RFsEg=sF
27 16 26 impbid KHLWHFTsEg=sFgTRg˙RF
28 27 abbidv KHLWHFTg|sEg=sF=g|gTRg˙RF
29 df-rab gT|Rg˙RF=g|gTRg˙RF
30 28 29 eqtr4di KHLWHFTg|sEg=sF=gT|Rg˙RF