Metamath Proof Explorer


Theorem dvhb1dimN

Description: Two expressions for the 1-dimensional subspaces of vector space H , in the isomorphism B case where the second vector component is zero. (Contributed by NM, 23-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvhb1dim.l ˙=K
dvhb1dim.h H=LHypK
dvhb1dim.t T=LTrnKW
dvhb1dim.r R=trLKW
dvhb1dim.e E=TEndoKW
dvhb1dim.o 0˙=hTIB
Assertion dvhb1dimN KHLWHFTgT×E|sEg=sF0˙=gT×E|R1stg˙RF2ndg=0˙

Proof

Step Hyp Ref Expression
1 dvhb1dim.l ˙=K
2 dvhb1dim.h H=LHypK
3 dvhb1dim.t T=LTrnKW
4 dvhb1dim.r R=trLKW
5 dvhb1dim.e E=TEndoKW
6 dvhb1dim.o 0˙=hTIB
7 eqop gT×Eg=sF0˙1stg=sF2ndg=0˙
8 7 adantl KHLWHFTgT×Eg=sF0˙1stg=sF2ndg=0˙
9 8 rexbidv KHLWHFTgT×EsEg=sF0˙sE1stg=sF2ndg=0˙
10 r19.41v sE1stg=sF2ndg=0˙sE1stg=sF2ndg=0˙
11 fvex 1stgV
12 eqeq1 f=1stgf=sF1stg=sF
13 12 rexbidv f=1stgsEf=sFsE1stg=sF
14 11 13 elab 1stgf|sEf=sFsE1stg=sF
15 1 2 3 4 5 dva1dim KHLWHFTf|sEf=sF=fT|Rf˙RF
16 15 adantr KHLWHFTgT×Ef|sEf=sF=fT|Rf˙RF
17 16 eleq2d KHLWHFTgT×E1stgf|sEf=sF1stgfT|Rf˙RF
18 14 17 bitr3id KHLWHFTgT×EsE1stg=sF1stgfT|Rf˙RF
19 xp1st gT×E1stgT
20 19 adantl KHLWHFTgT×E1stgT
21 fveq2 f=1stgRf=R1stg
22 21 breq1d f=1stgRf˙RFR1stg˙RF
23 22 elrab3 1stgT1stgfT|Rf˙RFR1stg˙RF
24 20 23 syl KHLWHFTgT×E1stgfT|Rf˙RFR1stg˙RF
25 18 24 bitrd KHLWHFTgT×EsE1stg=sFR1stg˙RF
26 25 anbi1d KHLWHFTgT×EsE1stg=sF2ndg=0˙R1stg˙RF2ndg=0˙
27 10 26 bitrid KHLWHFTgT×EsE1stg=sF2ndg=0˙R1stg˙RF2ndg=0˙
28 9 27 bitrd KHLWHFTgT×EsEg=sF0˙R1stg˙RF2ndg=0˙
29 28 rabbidva KHLWHFTgT×E|sEg=sF0˙=gT×E|R1stg˙RF2ndg=0˙