Step |
Hyp |
Ref |
Expression |
1 |
|
dvhb1dim.l |
|- .<_ = ( le ` K ) |
2 |
|
dvhb1dim.h |
|- H = ( LHyp ` K ) |
3 |
|
dvhb1dim.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dvhb1dim.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
dvhb1dim.e |
|- E = ( ( TEndo ` K ) ` W ) |
6 |
|
dvhb1dim.o |
|- .0. = ( h e. T |-> ( _I |` B ) ) |
7 |
|
eqop |
|- ( g e. ( T X. E ) -> ( g = <. ( s ` F ) , .0. >. <-> ( ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
8 |
7
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( g = <. ( s ` F ) , .0. >. <-> ( ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
9 |
8
|
rexbidv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( E. s e. E g = <. ( s ` F ) , .0. >. <-> E. s e. E ( ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
10 |
|
r19.41v |
|- ( E. s e. E ( ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) <-> ( E. s e. E ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) ) |
11 |
|
fvex |
|- ( 1st ` g ) e. _V |
12 |
|
eqeq1 |
|- ( f = ( 1st ` g ) -> ( f = ( s ` F ) <-> ( 1st ` g ) = ( s ` F ) ) ) |
13 |
12
|
rexbidv |
|- ( f = ( 1st ` g ) -> ( E. s e. E f = ( s ` F ) <-> E. s e. E ( 1st ` g ) = ( s ` F ) ) ) |
14 |
11 13
|
elab |
|- ( ( 1st ` g ) e. { f | E. s e. E f = ( s ` F ) } <-> E. s e. E ( 1st ` g ) = ( s ` F ) ) |
15 |
1 2 3 4 5
|
dva1dim |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> { f | E. s e. E f = ( s ` F ) } = { f e. T | ( R ` f ) .<_ ( R ` F ) } ) |
16 |
15
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> { f | E. s e. E f = ( s ` F ) } = { f e. T | ( R ` f ) .<_ ( R ` F ) } ) |
17 |
16
|
eleq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( ( 1st ` g ) e. { f | E. s e. E f = ( s ` F ) } <-> ( 1st ` g ) e. { f e. T | ( R ` f ) .<_ ( R ` F ) } ) ) |
18 |
14 17
|
bitr3id |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( E. s e. E ( 1st ` g ) = ( s ` F ) <-> ( 1st ` g ) e. { f e. T | ( R ` f ) .<_ ( R ` F ) } ) ) |
19 |
|
xp1st |
|- ( g e. ( T X. E ) -> ( 1st ` g ) e. T ) |
20 |
19
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( 1st ` g ) e. T ) |
21 |
|
fveq2 |
|- ( f = ( 1st ` g ) -> ( R ` f ) = ( R ` ( 1st ` g ) ) ) |
22 |
21
|
breq1d |
|- ( f = ( 1st ` g ) -> ( ( R ` f ) .<_ ( R ` F ) <-> ( R ` ( 1st ` g ) ) .<_ ( R ` F ) ) ) |
23 |
22
|
elrab3 |
|- ( ( 1st ` g ) e. T -> ( ( 1st ` g ) e. { f e. T | ( R ` f ) .<_ ( R ` F ) } <-> ( R ` ( 1st ` g ) ) .<_ ( R ` F ) ) ) |
24 |
20 23
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( ( 1st ` g ) e. { f e. T | ( R ` f ) .<_ ( R ` F ) } <-> ( R ` ( 1st ` g ) ) .<_ ( R ` F ) ) ) |
25 |
18 24
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( E. s e. E ( 1st ` g ) = ( s ` F ) <-> ( R ` ( 1st ` g ) ) .<_ ( R ` F ) ) ) |
26 |
25
|
anbi1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( ( E. s e. E ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) <-> ( ( R ` ( 1st ` g ) ) .<_ ( R ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
27 |
10 26
|
syl5bb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( E. s e. E ( ( 1st ` g ) = ( s ` F ) /\ ( 2nd ` g ) = .0. ) <-> ( ( R ` ( 1st ` g ) ) .<_ ( R ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
28 |
9 27
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ g e. ( T X. E ) ) -> ( E. s e. E g = <. ( s ` F ) , .0. >. <-> ( ( R ` ( 1st ` g ) ) .<_ ( R ` F ) /\ ( 2nd ` g ) = .0. ) ) ) |
29 |
28
|
rabbidva |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> { g e. ( T X. E ) | E. s e. E g = <. ( s ` F ) , .0. >. } = { g e. ( T X. E ) | ( ( R ` ( 1st ` g ) ) .<_ ( R ` F ) /\ ( 2nd ` g ) = .0. ) } ) |