| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divides |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
zexpcl |
|
| 4 |
3
|
ancoms |
|
| 5 |
4
|
adantll |
|
| 6 |
|
zexpcl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
dvdsmul2 |
|
| 9 |
5 7 8
|
syl2anc |
|
| 10 |
|
zcn |
|
| 11 |
10
|
adantl |
|
| 12 |
|
zcn |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
simplr |
|
| 15 |
11 13 14
|
mulexpd |
|
| 16 |
9 15
|
breqtrrd |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
breq2d |
|
| 19 |
16 18
|
syl5ibcom |
|
| 20 |
19
|
rexlimdva |
|
| 21 |
20
|
3adant2 |
|
| 22 |
2 21
|
sylbid |
|