Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvfsum.s | |
|
dvfsum.z | |
||
dvfsum.m | |
||
dvfsum.d | |
||
dvfsum.md | |
||
dvfsum.t | |
||
dvfsum.a | |
||
dvfsum.b1 | |
||
dvfsum.b2 | |
||
dvfsum.b3 | |
||
dvfsum.c | |
||
dvfsumrlim.l | |
||
dvfsumrlim.g | |
||
dvfsumrlim.k | |
||
dvfsumrlim3.1 | |
||
Assertion | dvfsumrlim3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | |
|
2 | dvfsum.z | |
|
3 | dvfsum.m | |
|
4 | dvfsum.d | |
|
5 | dvfsum.md | |
|
6 | dvfsum.t | |
|
7 | dvfsum.a | |
|
8 | dvfsum.b1 | |
|
9 | dvfsum.b2 | |
|
10 | dvfsum.b3 | |
|
11 | dvfsum.c | |
|
12 | dvfsumrlim.l | |
|
13 | dvfsumrlim.g | |
|
14 | dvfsumrlim.k | |
|
15 | dvfsumrlim3.1 | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | |
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlim | |
18 | 3 | adantr | |
19 | 4 | adantr | |
20 | 5 | adantr | |
21 | 6 | adantr | |
22 | 7 | adantlr | |
23 | 8 | adantlr | |
24 | 9 | adantlr | |
25 | 10 | adantr | |
26 | 12 | 3adant1r | |
27 | 14 | adantr | |
28 | simprr | |
|
29 | simprl | |
|
30 | 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 | dvfsumrlim2 | |
31 | 28 | adantr | |
32 | nfcvd | |
|
33 | 32 15 | csbiegf | |
34 | 31 33 | syl | |
35 | 30 34 | breqtrd | |
36 | 35 | exp42 | |
37 | 36 | com24 | |
38 | 37 | 3impd | |
39 | 16 17 38 | 3jca | |