Metamath Proof Explorer


Theorem dvfsumrlim3

Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsumrlim.l φxSkSDxxkCB
dvfsumrlim.g G=xSk=MxCA
dvfsumrlim.k φxSB0
dvfsumrlim3.1 x=XB=E
Assertion dvfsumrlim3 φG:SGdomGLXSDXGXLE

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsumrlim.l φxSkSDxxkCB
13 dvfsumrlim.g G=xSk=MxCA
14 dvfsumrlim.k φxSB0
15 dvfsumrlim3.1 x=XB=E
16 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf φG:S
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlim φGdom
18 3 adantr φDXXSM
19 4 adantr φDXXSD
20 5 adantr φDXXSMD+1
21 6 adantr φDXXST
22 7 adantlr φDXXSxSA
23 8 adantlr φDXXSxSBV
24 9 adantlr φDXXSxZB
25 10 adantr φDXXSdxSAdx=xSB
26 12 3adant1r φDXXSxSkSDxxkCB
27 14 adantr φDXXSxSB0
28 simprr φDXXSXS
29 simprl φDXXSDX
30 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 dvfsumrlim2 φDXXSGLGXLX/xB
31 28 adantr φDXXSGLXS
32 nfcvd XS_xE
33 32 15 csbiegf XSX/xB=E
34 31 33 syl φDXXSGLX/xB=E
35 30 34 breqtrd φDXXSGLGXLE
36 35 exp42 φDXXSGLGXLE
37 36 com24 φGLXSDXGXLE
38 37 3impd φGLXSDXGXLE
39 16 17 38 3jca φG:SGdomGLXSDXGXLE