Metamath Proof Explorer


Theorem dvgt0

Description: A function on a closed interval with positive derivative is increasing. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvgt0.a φA
dvgt0.b φB
dvgt0.f φF:ABcn
dvgt0.d φF:AB+
Assertion dvgt0 φFIsom<,<ABranF

Proof

Step Hyp Ref Expression
1 dvgt0.a φA
2 dvgt0.b φB
3 dvgt0.f φF:ABcn
4 dvgt0.d φF:AB+
5 ltso <Or
6 1 2 3 4 dvgt0lem1 φxAByABx<yFyFxyx+
7 6 rpgt0d φxAByABx<y0<FyFxyx
8 cncff F:ABcnF:AB
9 3 8 syl φF:AB
10 9 ad2antrr φxAByABx<yF:AB
11 simplrr φxAByABx<yyAB
12 10 11 ffvelcdmd φxAByABx<yFy
13 simplrl φxAByABx<yxAB
14 10 13 ffvelcdmd φxAByABx<yFx
15 12 14 resubcld φxAByABx<yFyFx
16 iccssre ABAB
17 1 2 16 syl2anc φAB
18 17 ad2antrr φxAByABx<yAB
19 18 11 sseldd φxAByABx<yy
20 18 13 sseldd φxAByABx<yx
21 19 20 resubcld φxAByABx<yyx
22 simpr φxAByABx<yx<y
23 20 19 posdifd φxAByABx<yx<y0<yx
24 22 23 mpbid φxAByABx<y0<yx
25 gt0div FyFxyx0<yx0<FyFx0<FyFxyx
26 15 21 24 25 syl3anc φxAByABx<y0<FyFx0<FyFxyx
27 7 26 mpbird φxAByABx<y0<FyFx
28 14 12 posdifd φxAByABx<yFx<Fy0<FyFx
29 27 28 mpbird φxAByABx<yFx<Fy
30 1 2 3 4 5 29 dvgt0lem2 φFIsom<,<ABranF