Metamath Proof Explorer


Theorem dvhfset

Description: The constructed full vector space H for a lattice K . (Contributed by NM, 17-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypothesis dvhset.h H=LHypK
Assertion dvhfset KVDVecHK=wHBasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKwndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf

Proof

Step Hyp Ref Expression
1 dvhset.h H=LHypK
2 elex KVKV
3 fveq2 k=KLHypk=LHypK
4 3 1 eqtr4di k=KLHypk=H
5 fveq2 k=KLTrnk=LTrnK
6 5 fveq1d k=KLTrnkw=LTrnKw
7 fveq2 k=KTEndok=TEndoK
8 7 fveq1d k=KTEndokw=TEndoKw
9 6 8 xpeq12d k=KLTrnkw×TEndokw=LTrnKw×TEndoKw
10 9 opeq2d k=KBasendxLTrnkw×TEndokw=BasendxLTrnKw×TEndoKw
11 6 mpteq1d k=KhLTrnkw2ndfh2ndgh=hLTrnKw2ndfh2ndgh
12 11 opeq2d k=K1stf1stghLTrnkw2ndfh2ndgh=1stf1stghLTrnKw2ndfh2ndgh
13 9 9 12 mpoeq123dv k=KfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndgh=fLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndgh
14 13 opeq2d k=K+ndxfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndgh=+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndgh
15 fveq2 k=KEDRingk=EDRingK
16 15 fveq1d k=KEDRingkw=EDRingKw
17 16 opeq2d k=KScalarndxEDRingkw=ScalarndxEDRingKw
18 10 14 17 tpeq123d k=KBasendxLTrnkw×TEndokw+ndxfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndghScalarndxEDRingkw=BasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKw
19 eqidd k=Ks1stfs2ndf=s1stfs2ndf
20 8 9 19 mpoeq123dv k=KsTEndokw,fLTrnkw×TEndokws1stfs2ndf=sTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
21 20 opeq2d k=KndxsTEndokw,fLTrnkw×TEndokws1stfs2ndf=ndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
22 21 sneqd k=KndxsTEndokw,fLTrnkw×TEndokws1stfs2ndf=ndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
23 18 22 uneq12d k=KBasendxLTrnkw×TEndokw+ndxfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndghScalarndxEDRingkwndxsTEndokw,fLTrnkw×TEndokws1stfs2ndf=BasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKwndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
24 4 23 mpteq12dv k=KwLHypkBasendxLTrnkw×TEndokw+ndxfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndghScalarndxEDRingkwndxsTEndokw,fLTrnkw×TEndokws1stfs2ndf=wHBasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKwndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
25 df-dvech DVecH=kVwLHypkBasendxLTrnkw×TEndokw+ndxfLTrnkw×TEndokw,gLTrnkw×TEndokw1stf1stghLTrnkw2ndfh2ndghScalarndxEDRingkwndxsTEndokw,fLTrnkw×TEndokws1stfs2ndf
26 24 25 1 mptfvmpt KVDVecHK=wHBasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKwndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf
27 2 26 syl KVDVecHK=wHBasendxLTrnKw×TEndoKw+ndxfLTrnKw×TEndoKw,gLTrnKw×TEndoKw1stf1stghLTrnKw2ndfh2ndghScalarndxEDRingKwndxsTEndoKw,fLTrnKw×TEndoKws1stfs2ndf