Metamath Proof Explorer


Theorem dvhvscacl

Description: Closure of the scalar product operation for the constructed full vector space H. (Contributed by NM, 12-Feb-2014)

Ref Expression
Hypotheses dvhfvsca.h H=LHypK
dvhfvsca.t T=LTrnKW
dvhfvsca.e E=TEndoKW
dvhfvsca.u U=DVecHKW
dvhfvsca.s ·˙=U
Assertion dvhvscacl KHLWHREFT×ER·˙FT×E

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H=LHypK
2 dvhfvsca.t T=LTrnKW
3 dvhfvsca.e E=TEndoKW
4 dvhfvsca.u U=DVecHKW
5 dvhfvsca.s ·˙=U
6 1 2 3 4 5 dvhvsca KHLWHREFT×ER·˙F=R1stFR2ndF
7 simpl KHLWHREFT×EKHLWH
8 simprl KHLWHREFT×ERE
9 xp1st FT×E1stFT
10 9 ad2antll KHLWHREFT×E1stFT
11 1 2 3 tendocl KHLWHRE1stFTR1stFT
12 7 8 10 11 syl3anc KHLWHREFT×ER1stFT
13 xp2nd FT×E2ndFE
14 13 ad2antll KHLWHREFT×E2ndFE
15 1 3 tendococl KHLWHRE2ndFER2ndFE
16 7 8 14 15 syl3anc KHLWHREFT×ER2ndFE
17 opelxpi R1stFTR2ndFER1stFR2ndFT×E
18 12 16 17 syl2anc KHLWHREFT×ER1stFR2ndFT×E
19 6 18 eqeltrd KHLWHREFT×ER·˙FT×E