Metamath Proof Explorer


Theorem dvivthlem2

Description: Lemma for dvivth . (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φMAB
dvivth.2 φNAB
dvivth.3 φF:ABcn
dvivth.4 φdomF=AB
dvivth.5 φM<N
dvivth.6 φCFNFM
dvivth.7 G=yABFyCy
Assertion dvivthlem2 φCranF

Proof

Step Hyp Ref Expression
1 dvivth.1 φMAB
2 dvivth.2 φNAB
3 dvivth.3 φF:ABcn
4 dvivth.4 φdomF=AB
5 dvivth.5 φM<N
6 dvivth.6 φCFNFM
7 dvivth.7 G=yABFyCy
8 1 2 3 4 5 6 7 dvivthlem1 φxMNFx=C
9 dvf F:domF
10 4 feq2d φF:domFF:AB
11 9 10 mpbii φF:AB
12 11 ffnd φFFnAB
13 iccssioo2 MABNABMNAB
14 1 2 13 syl2anc φMNAB
15 14 sselda φxMNxAB
16 fnfvelrn FFnABxABFxranF
17 12 15 16 syl2an2r φxMNFxranF
18 eleq1 Fx=CFxranFCranF
19 17 18 syl5ibcom φxMNFx=CCranF
20 19 rexlimdva φxMNFx=CCranF
21 8 20 mpd φCranF