Metamath Proof Explorer


Theorem dvivth

Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φMAB
dvivth.2 φNAB
dvivth.3 φF:ABcn
dvivth.4 φdomF=AB
Assertion dvivth φFMFNranF

Proof

Step Hyp Ref Expression
1 dvivth.1 φMAB
2 dvivth.2 φNAB
3 dvivth.3 φF:ABcn
4 dvivth.4 φdomF=AB
5 1 adantr φM<NxFMFNMAB
6 2 adantr φM<NxFMFNNAB
7 cncff F:ABcnF:AB
8 3 7 syl φF:AB
9 8 ffvelcdmda φwABFw
10 9 renegcld φwABFw
11 10 fmpttd φwABFw:AB
12 ax-resscn
13 ssid
14 cncfss ABcnABcn
15 12 13 14 mp2an ABcnABcn
16 15 3 sselid φF:ABcn
17 eqid wABFw=wABFw
18 17 negfcncf F:ABcnwABFw:ABcn
19 16 18 syl φwABFw:ABcn
20 cncfcdm wABFw:ABcnwABFw:ABcnwABFw:AB
21 12 19 20 sylancr φwABFw:ABcnwABFw:AB
22 11 21 mpbird φwABFw:ABcn
23 22 adantr φM<NxFMFNwABFw:ABcn
24 reelprrecn
25 24 a1i φM<NxFMFN
26 8 adantr φM<NxFMFNF:AB
27 26 ffvelcdmda φM<NxFMFNwABFw
28 27 recnd φM<NxFMFNwABFw
29 fvexd φM<NxFMFNwABFwV
30 26 feqmptd φM<NxFMFNF=wABFw
31 30 oveq2d φM<NxFMFNDF=dwABFwdw
32 ioossre AB
33 dvfre F:ABABF:domF
34 8 32 33 sylancl φF:domF
35 4 feq2d φF:domFF:AB
36 34 35 mpbid φF:AB
37 36 adantr φM<NxFMFNF:AB
38 37 feqmptd φM<NxFMFNDF=wABFw
39 31 38 eqtr3d φM<NxFMFNdwABFwdw=wABFw
40 25 28 29 39 dvmptneg φM<NxFMFNdwABFwdw=wABFw
41 40 dmeqd φM<NxFMFNdomdwABFwdw=domwABFw
42 dmmptg wABFwVdomwABFw=AB
43 negex FwV
44 43 a1i wABFwV
45 42 44 mprg domwABFw=AB
46 41 45 eqtrdi φM<NxFMFNdomdwABFwdw=AB
47 simprl φM<NxFMFNM<N
48 simprr φM<NxFMFNxFMFN
49 36 1 ffvelcdmd φFM
50 49 adantr φM<NxFMFNFM
51 2 4 eleqtrrd φNdomF
52 34 51 ffvelcdmd φFN
53 52 adantr φM<NxFMFNFN
54 iccssre FMFNFMFN
55 49 52 54 syl2anc φFMFN
56 55 adantr φM<NxFMFNFMFN
57 56 48 sseldd φM<NxFMFNx
58 iccneg FMFNxxFMFNxFNFM
59 50 53 57 58 syl3anc φM<NxFMFNxFMFNxFNFM
60 48 59 mpbid φM<NxFMFNxFNFM
61 40 fveq1d φM<NxFMFNdwABFwdwN=wABFwN
62 fveq2 w=NFw=FN
63 62 negeqd w=NFw=FN
64 eqid wABFw=wABFw
65 negex FNV
66 63 64 65 fvmpt NABwABFwN=FN
67 6 66 syl φM<NxFMFNwABFwN=FN
68 61 67 eqtrd φM<NxFMFNdwABFwdwN=FN
69 40 fveq1d φM<NxFMFNdwABFwdwM=wABFwM
70 fveq2 w=MFw=FM
71 70 negeqd w=MFw=FM
72 negex FMV
73 71 64 72 fvmpt MABwABFwM=FM
74 5 73 syl φM<NxFMFNwABFwM=FM
75 69 74 eqtrd φM<NxFMFNdwABFwdwM=FM
76 68 75 oveq12d φM<NxFMFNdwABFwdwNdwABFwdwM=FNFM
77 60 76 eleqtrrd φM<NxFMFNxdwABFwdwNdwABFwdwM
78 eqid yABwABFwyxy=yABwABFwyxy
79 5 6 23 46 47 77 78 dvivthlem2 φM<NxFMFNxrandwABFwdw
80 40 rneqd φM<NxFMFNrandwABFwdw=ranwABFw
81 79 80 eleqtrd φM<NxFMFNxranwABFw
82 negex xV
83 64 elrnmpt xVxranwABFwwABx=Fw
84 82 83 ax-mp xranwABFwwABx=Fw
85 81 84 sylib φM<NxFMFNwABx=Fw
86 57 recnd φM<NxFMFNx
87 86 adantr φM<NxFMFNwABx
88 25 28 29 39 dvmptcl φM<NxFMFNwABFw
89 87 88 neg11ad φM<NxFMFNwABx=Fwx=Fw
90 eqcom x=FwFw=x
91 89 90 bitrdi φM<NxFMFNwABx=FwFw=x
92 91 rexbidva φM<NxFMFNwABx=FwwABFw=x
93 85 92 mpbid φM<NxFMFNwABFw=x
94 37 ffnd φM<NxFMFNFFnAB
95 fvelrnb FFnABxranFwABFw=x
96 94 95 syl φM<NxFMFNxranFwABFw=x
97 93 96 mpbird φM<NxFMFNxranF
98 97 expr φM<NxFMFNxranF
99 98 ssrdv φM<NFMFNranF
100 fveq2 M=NFM=FN
101 100 oveq1d M=NFMFN=FNFN
102 52 rexrd φFN*
103 iccid FN*FNFN=FN
104 102 103 syl φFNFN=FN
105 101 104 sylan9eqr φM=NFMFN=FN
106 34 ffnd φFFndomF
107 fnfvelrn FFndomFNdomFFNranF
108 106 51 107 syl2anc φFNranF
109 108 snssd φFNranF
110 109 adantr φM=NFNranF
111 105 110 eqsstrd φM=NFMFNranF
112 2 adantr φN<MxFMFNNAB
113 1 adantr φN<MxFMFNMAB
114 3 adantr φN<MxFMFNF:ABcn
115 4 adantr φN<MxFMFNdomF=AB
116 simprl φN<MxFMFNN<M
117 simprr φN<MxFMFNxFMFN
118 eqid yABFyxy=yABFyxy
119 112 113 114 115 116 117 118 dvivthlem2 φN<MxFMFNxranF
120 119 expr φN<MxFMFNxranF
121 120 ssrdv φN<MFMFNranF
122 32 1 sselid φM
123 32 2 sselid φN
124 122 123 lttri4d φM<NM=NN<M
125 99 111 121 124 mpjao3dan φFMFNranF