| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivthicc.1 |
|
| 2 |
|
ivthicc.2 |
|
| 3 |
|
ivthicc.3 |
|
| 4 |
|
ivthicc.4 |
|
| 5 |
|
ivthicc.5 |
|
| 6 |
|
ivthicc.7 |
|
| 7 |
|
ivthicc.8 |
|
| 8 |
|
simpll |
|
| 9 |
|
elicc2 |
|
| 10 |
1 2 9
|
syl2anc |
|
| 11 |
3 10
|
mpbid |
|
| 12 |
11
|
simp1d |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
elicc2 |
|
| 15 |
1 2 14
|
syl2anc |
|
| 16 |
4 15
|
mpbid |
|
| 17 |
16
|
simp1d |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
eleq1d |
|
| 21 |
7
|
ralrimiva |
|
| 22 |
20 21 3
|
rspcdva |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
eleq1d |
|
| 25 |
24 21 4
|
rspcdva |
|
| 26 |
|
iccssre |
|
| 27 |
22 25 26
|
syl2anc |
|
| 28 |
27
|
sselda |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
11
|
simp2d |
|
| 32 |
16
|
simp3d |
|
| 33 |
|
iccss |
|
| 34 |
1 2 31 32 33
|
syl22anc |
|
| 35 |
34 5
|
sstrd |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
6
|
ad2antrr |
|
| 38 |
34
|
sselda |
|
| 39 |
38 7
|
syldan |
|
| 40 |
8 39
|
sylan |
|
| 41 |
|
elicc2 |
|
| 42 |
22 25 41
|
syl2anc |
|
| 43 |
42
|
biimpa |
|
| 44 |
|
3simpc |
|
| 45 |
43 44
|
syl |
|
| 46 |
45
|
adantr |
|
| 47 |
13 18 29 30 36 37 40 46
|
ivthle |
|
| 48 |
35
|
sselda |
|
| 49 |
|
cncff |
|
| 50 |
|
ffn |
|
| 51 |
6 49 50
|
3syl |
|
| 52 |
|
fnfvelrn |
|
| 53 |
51 52
|
sylan |
|
| 54 |
|
eleq1 |
|
| 55 |
53 54
|
syl5ibcom |
|
| 56 |
48 55
|
syldan |
|
| 57 |
56
|
rexlimdva |
|
| 58 |
8 47 57
|
sylc |
|
| 59 |
|
simplr |
|
| 60 |
|
simpr |
|
| 61 |
60
|
fveq2d |
|
| 62 |
61
|
oveq2d |
|
| 63 |
22
|
rexrd |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
|
iccid |
|
| 66 |
64 65
|
syl |
|
| 67 |
62 66
|
eqtr3d |
|
| 68 |
59 67
|
eleqtrd |
|
| 69 |
|
elsni |
|
| 70 |
68 69
|
syl |
|
| 71 |
5 3
|
sseldd |
|
| 72 |
|
fnfvelrn |
|
| 73 |
51 71 72
|
syl2anc |
|
| 74 |
73
|
ad2antrr |
|
| 75 |
70 74
|
eqeltrd |
|
| 76 |
|
simpll |
|
| 77 |
17
|
ad2antrr |
|
| 78 |
12
|
ad2antrr |
|
| 79 |
28
|
adantr |
|
| 80 |
|
simpr |
|
| 81 |
16
|
simp2d |
|
| 82 |
11
|
simp3d |
|
| 83 |
|
iccss |
|
| 84 |
1 2 81 82 83
|
syl22anc |
|
| 85 |
84 5
|
sstrd |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
6
|
ad2antrr |
|
| 88 |
84
|
sselda |
|
| 89 |
88 7
|
syldan |
|
| 90 |
76 89
|
sylan |
|
| 91 |
45
|
adantr |
|
| 92 |
77 78 79 80 86 87 90 91
|
ivthle2 |
|
| 93 |
85
|
sselda |
|
| 94 |
93 55
|
syldan |
|
| 95 |
94
|
rexlimdva |
|
| 96 |
76 92 95
|
sylc |
|
| 97 |
12 17
|
lttri4d |
|
| 98 |
97
|
adantr |
|
| 99 |
58 75 96 98
|
mpjao3dan |
|
| 100 |
99
|
ex |
|
| 101 |
100
|
ssrdv |
|