Metamath Proof Explorer


Theorem ivthle

Description: The intermediate value theorem with weak inequality, increasing case. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivthle.9 φFAUUFB
Assertion ivthle φcABFc=U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivthle.9 φFAUUFB
9 ioossicc ABAB
10 1 adantr φFA<UU<FBA
11 2 adantr φFA<UU<FBB
12 3 adantr φFA<UU<FBU
13 4 adantr φFA<UU<FBA<B
14 5 adantr φFA<UU<FBABD
15 6 adantr φFA<UU<FBF:Dcn
16 7 adantlr φFA<UU<FBxABFx
17 simpr φFA<UU<FBFA<UU<FB
18 10 11 12 13 14 15 16 17 ivth φFA<UU<FBcABFc=U
19 ssrexv ABABcABFc=UcABFc=U
20 9 18 19 mpsyl φFA<UU<FBcABFc=U
21 20 anassrs φFA<UU<FBcABFc=U
22 1 rexrd φA*
23 2 rexrd φB*
24 1 2 4 ltled φAB
25 ubicc2 A*B*ABBAB
26 22 23 24 25 syl3anc φBAB
27 eqcom Fc=UU=Fc
28 fveq2 c=BFc=FB
29 28 eqeq2d c=BU=FcU=FB
30 27 29 bitrid c=BFc=UU=FB
31 30 rspcev BABU=FBcABFc=U
32 26 31 sylan φU=FBcABFc=U
33 32 adantlr φFA<UU=FBcABFc=U
34 8 simprd φUFB
35 fveq2 x=BFx=FB
36 35 eleq1d x=BFxFB
37 7 ralrimiva φxABFx
38 36 37 26 rspcdva φFB
39 3 38 leloed φUFBU<FBU=FB
40 34 39 mpbid φU<FBU=FB
41 40 adantr φFA<UU<FBU=FB
42 21 33 41 mpjaodan φFA<UcABFc=U
43 lbicc2 A*B*ABAAB
44 22 23 24 43 syl3anc φAAB
45 fveqeq2 c=AFc=UFA=U
46 45 rspcev AABFA=UcABFc=U
47 44 46 sylan φFA=UcABFc=U
48 8 simpld φFAU
49 fveq2 x=AFx=FA
50 49 eleq1d x=AFxFA
51 50 37 44 rspcdva φFA
52 51 3 leloed φFAUFA<UFA=U
53 48 52 mpbid φFA<UFA=U
54 42 47 53 mpjaodan φcABFc=U