Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ivth.1 | |
|
ivth.2 | |
||
ivth.3 | |
||
ivth.4 | |
||
ivth.5 | |
||
ivth.7 | |
||
ivth.8 | |
||
ivthle2.9 | |
||
Assertion | ivthle2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | |
|
2 | ivth.2 | |
|
3 | ivth.3 | |
|
4 | ivth.4 | |
|
5 | ivth.5 | |
|
6 | ivth.7 | |
|
7 | ivth.8 | |
|
8 | ivthle2.9 | |
|
9 | ioossicc | |
|
10 | 1 | adantr | |
11 | 2 | adantr | |
12 | 3 | adantr | |
13 | 4 | adantr | |
14 | 5 | adantr | |
15 | 6 | adantr | |
16 | 7 | adantlr | |
17 | simpr | |
|
18 | 10 11 12 13 14 15 16 17 | ivth2 | |
19 | ssrexv | |
|
20 | 9 18 19 | mpsyl | |
21 | 20 | anassrs | |
22 | 1 | rexrd | |
23 | 2 | rexrd | |
24 | 1 2 4 | ltled | |
25 | lbicc2 | |
|
26 | 22 23 24 25 | syl3anc | |
27 | eqcom | |
|
28 | fveq2 | |
|
29 | 28 | eqeq2d | |
30 | 27 29 | bitrid | |
31 | 30 | rspcev | |
32 | 26 31 | sylan | |
33 | 32 | adantlr | |
34 | 8 | simprd | |
35 | fveq2 | |
|
36 | 35 | eleq1d | |
37 | 7 | ralrimiva | |
38 | 36 37 26 | rspcdva | |
39 | 3 38 | leloed | |
40 | 34 39 | mpbid | |
41 | 40 | adantr | |
42 | 21 33 41 | mpjaodan | |
43 | ubicc2 | |
|
44 | 22 23 24 43 | syl3anc | |
45 | fveqeq2 | |
|
46 | 45 | rspcev | |
47 | 44 46 | sylan | |
48 | 8 | simpld | |
49 | fveq2 | |
|
50 | 49 | eleq1d | |
51 | 50 37 44 | rspcdva | |
52 | 51 3 | leloed | |
53 | 48 52 | mpbid | |
54 | 42 47 53 | mpjaodan | |