Metamath Proof Explorer


Theorem ivthle2

Description: The intermediate value theorem with weak inequality, decreasing case. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivthle2.9 φFBUUFA
Assertion ivthle2 φcABFc=U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivthle2.9 φFBUUFA
9 ioossicc ABAB
10 1 adantr φFB<UU<FAA
11 2 adantr φFB<UU<FAB
12 3 adantr φFB<UU<FAU
13 4 adantr φFB<UU<FAA<B
14 5 adantr φFB<UU<FAABD
15 6 adantr φFB<UU<FAF:Dcn
16 7 adantlr φFB<UU<FAxABFx
17 simpr φFB<UU<FAFB<UU<FA
18 10 11 12 13 14 15 16 17 ivth2 φFB<UU<FAcABFc=U
19 ssrexv ABABcABFc=UcABFc=U
20 9 18 19 mpsyl φFB<UU<FAcABFc=U
21 20 anassrs φFB<UU<FAcABFc=U
22 1 rexrd φA*
23 2 rexrd φB*
24 1 2 4 ltled φAB
25 lbicc2 A*B*ABAAB
26 22 23 24 25 syl3anc φAAB
27 eqcom Fc=UU=Fc
28 fveq2 c=AFc=FA
29 28 eqeq2d c=AU=FcU=FA
30 27 29 bitrid c=AFc=UU=FA
31 30 rspcev AABU=FAcABFc=U
32 26 31 sylan φU=FAcABFc=U
33 32 adantlr φFB<UU=FAcABFc=U
34 8 simprd φUFA
35 fveq2 x=AFx=FA
36 35 eleq1d x=AFxFA
37 7 ralrimiva φxABFx
38 36 37 26 rspcdva φFA
39 3 38 leloed φUFAU<FAU=FA
40 34 39 mpbid φU<FAU=FA
41 40 adantr φFB<UU<FAU=FA
42 21 33 41 mpjaodan φFB<UcABFc=U
43 ubicc2 A*B*ABBAB
44 22 23 24 43 syl3anc φBAB
45 fveqeq2 c=BFc=UFB=U
46 45 rspcev BABFB=UcABFc=U
47 44 46 sylan φFB=UcABFc=U
48 8 simpld φFBU
49 fveq2 x=BFx=FB
50 49 eleq1d x=BFxFB
51 50 37 44 rspcdva φFB
52 51 3 leloed φFBUFB<UFB=U
53 48 52 mpbid φFB<UFB=U
54 42 47 53 mpjaodan φcABFc=U