Step |
Hyp |
Ref |
Expression |
1 |
|
ivthicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ivthicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ivthicc.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ) |
4 |
|
ivthicc.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ) |
5 |
|
ivthicc.5 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝐷 ) |
6 |
|
ivthicc.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
7 |
|
ivthicc.8 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
8 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝜑 ) |
9 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) |
10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) ) |
11 |
3 10
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ℝ ∧ 𝐴 ≤ 𝑀 ∧ 𝑀 ≤ 𝐵 ) ) |
12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
14 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) |
15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) ) |
16 |
4 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ 𝐴 ≤ 𝑁 ∧ 𝑁 ≤ 𝐵 ) ) |
17 |
16
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
21 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
22 |
20 21 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
25 |
24 21 4
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
26 |
|
iccssre |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) |
27 |
22 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ℝ ) |
28 |
27
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ℝ ) |
30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑀 < 𝑁 ) |
31 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑀 ) |
32 |
16
|
simp3d |
⊢ ( 𝜑 → 𝑁 ≤ 𝐵 ) |
33 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑀 ∧ 𝑁 ≤ 𝐵 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
34 |
1 2 31 32 33
|
syl22anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
35 |
34 5
|
sstrd |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( 𝑀 [,] 𝑁 ) ⊆ 𝐷 ) |
37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
38 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
39 |
38 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
40 |
8 39
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
41 |
|
elicc2 |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
42 |
22 25 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
43 |
42
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
44 |
|
3simpc |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
47 |
13 18 29 30 36 37 40 46
|
ivthle |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
48 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝑧 ∈ 𝐷 ) |
49 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐷 –cn→ ℂ ) → 𝐹 : 𝐷 ⟶ ℂ ) |
50 |
|
ffn |
⊢ ( 𝐹 : 𝐷 ⟶ ℂ → 𝐹 Fn 𝐷 ) |
51 |
6 49 50
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
52 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
53 |
51 52
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
54 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹 ) ) |
55 |
53 54
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
56 |
48 55
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
57 |
56
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑀 [,] 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
58 |
8 47 57
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 < 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) |
60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑀 = 𝑁 ) |
61 |
60
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) = ( 𝐹 ‘ 𝑁 ) ) |
62 |
61
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) |
63 |
22
|
rexrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
65 |
|
iccid |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
66 |
64 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑀 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
67 |
62 66
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) = { ( 𝐹 ‘ 𝑀 ) } ) |
68 |
59 67
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } ) |
69 |
|
elsni |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑀 ) } → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 = ( 𝐹 ‘ 𝑀 ) ) |
71 |
5 3
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ 𝐷 ) |
72 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑀 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
73 |
51 71 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
75 |
70 74
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑀 = 𝑁 ) → 𝑦 ∈ ran 𝐹 ) |
76 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝜑 ) |
77 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ℝ ) |
78 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑀 ∈ ℝ ) |
79 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ℝ ) |
80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑁 < 𝑀 ) |
81 |
16
|
simp2d |
⊢ ( 𝜑 → 𝐴 ≤ 𝑁 ) |
82 |
11
|
simp3d |
⊢ ( 𝜑 → 𝑀 ≤ 𝐵 ) |
83 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝑁 ∧ 𝑀 ≤ 𝐵 ) ) → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
84 |
1 2 81 82 83
|
syl22anc |
⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
85 |
84 5
|
sstrd |
⊢ ( 𝜑 → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( 𝑁 [,] 𝑀 ) ⊆ 𝐷 ) |
87 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝐹 ∈ ( 𝐷 –cn→ ℂ ) ) |
88 |
84
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
89 |
88 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
90 |
76 89
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) ∧ 𝑥 ∈ ( 𝑁 [,] 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
91 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ 𝑦 ∧ 𝑦 ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
92 |
77 78 79 80 86 87 90 91
|
ivthle2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
93 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → 𝑧 ∈ 𝐷 ) |
94 |
93 55
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
95 |
94
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝑁 [,] 𝑀 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ ran 𝐹 ) ) |
96 |
76 92 95
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) ∧ 𝑁 < 𝑀 ) → 𝑦 ∈ ran 𝐹 ) |
97 |
12 17
|
lttri4d |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → ( 𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀 ) ) |
99 |
58 75 96 98
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ) → 𝑦 ∈ ran 𝐹 ) |
100 |
99
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) → 𝑦 ∈ ran 𝐹 ) ) |
101 |
100
|
ssrdv |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) [,] ( 𝐹 ‘ 𝑁 ) ) ⊆ ran 𝐹 ) |