| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ivthicc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
ivthicc.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
ivthicc.3 |
|- ( ph -> M e. ( A [,] B ) ) |
| 4 |
|
ivthicc.4 |
|- ( ph -> N e. ( A [,] B ) ) |
| 5 |
|
ivthicc.5 |
|- ( ph -> ( A [,] B ) C_ D ) |
| 6 |
|
ivthicc.7 |
|- ( ph -> F e. ( D -cn-> CC ) ) |
| 7 |
|
ivthicc.8 |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 8 |
|
simpll |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ph ) |
| 9 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( M e. ( A [,] B ) <-> ( M e. RR /\ A <_ M /\ M <_ B ) ) ) |
| 10 |
1 2 9
|
syl2anc |
|- ( ph -> ( M e. ( A [,] B ) <-> ( M e. RR /\ A <_ M /\ M <_ B ) ) ) |
| 11 |
3 10
|
mpbid |
|- ( ph -> ( M e. RR /\ A <_ M /\ M <_ B ) ) |
| 12 |
11
|
simp1d |
|- ( ph -> M e. RR ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> M e. RR ) |
| 14 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( N e. ( A [,] B ) <-> ( N e. RR /\ A <_ N /\ N <_ B ) ) ) |
| 15 |
1 2 14
|
syl2anc |
|- ( ph -> ( N e. ( A [,] B ) <-> ( N e. RR /\ A <_ N /\ N <_ B ) ) ) |
| 16 |
4 15
|
mpbid |
|- ( ph -> ( N e. RR /\ A <_ N /\ N <_ B ) ) |
| 17 |
16
|
simp1d |
|- ( ph -> N e. RR ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> N e. RR ) |
| 19 |
|
fveq2 |
|- ( x = M -> ( F ` x ) = ( F ` M ) ) |
| 20 |
19
|
eleq1d |
|- ( x = M -> ( ( F ` x ) e. RR <-> ( F ` M ) e. RR ) ) |
| 21 |
7
|
ralrimiva |
|- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 22 |
20 21 3
|
rspcdva |
|- ( ph -> ( F ` M ) e. RR ) |
| 23 |
|
fveq2 |
|- ( x = N -> ( F ` x ) = ( F ` N ) ) |
| 24 |
23
|
eleq1d |
|- ( x = N -> ( ( F ` x ) e. RR <-> ( F ` N ) e. RR ) ) |
| 25 |
24 21 4
|
rspcdva |
|- ( ph -> ( F ` N ) e. RR ) |
| 26 |
|
iccssre |
|- ( ( ( F ` M ) e. RR /\ ( F ` N ) e. RR ) -> ( ( F ` M ) [,] ( F ` N ) ) C_ RR ) |
| 27 |
22 25 26
|
syl2anc |
|- ( ph -> ( ( F ` M ) [,] ( F ` N ) ) C_ RR ) |
| 28 |
27
|
sselda |
|- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> y e. RR ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> y e. RR ) |
| 30 |
|
simpr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> M < N ) |
| 31 |
11
|
simp2d |
|- ( ph -> A <_ M ) |
| 32 |
16
|
simp3d |
|- ( ph -> N <_ B ) |
| 33 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ M /\ N <_ B ) ) -> ( M [,] N ) C_ ( A [,] B ) ) |
| 34 |
1 2 31 32 33
|
syl22anc |
|- ( ph -> ( M [,] N ) C_ ( A [,] B ) ) |
| 35 |
34 5
|
sstrd |
|- ( ph -> ( M [,] N ) C_ D ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ( M [,] N ) C_ D ) |
| 37 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> F e. ( D -cn-> CC ) ) |
| 38 |
34
|
sselda |
|- ( ( ph /\ x e. ( M [,] N ) ) -> x e. ( A [,] B ) ) |
| 39 |
38 7
|
syldan |
|- ( ( ph /\ x e. ( M [,] N ) ) -> ( F ` x ) e. RR ) |
| 40 |
8 39
|
sylan |
|- ( ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) /\ x e. ( M [,] N ) ) -> ( F ` x ) e. RR ) |
| 41 |
|
elicc2 |
|- ( ( ( F ` M ) e. RR /\ ( F ` N ) e. RR ) -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) <-> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) ) |
| 42 |
22 25 41
|
syl2anc |
|- ( ph -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) <-> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) ) |
| 43 |
42
|
biimpa |
|- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 44 |
|
3simpc |
|- ( ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 47 |
13 18 29 30 36 37 40 46
|
ivthle |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> E. z e. ( M [,] N ) ( F ` z ) = y ) |
| 48 |
35
|
sselda |
|- ( ( ph /\ z e. ( M [,] N ) ) -> z e. D ) |
| 49 |
|
cncff |
|- ( F e. ( D -cn-> CC ) -> F : D --> CC ) |
| 50 |
|
ffn |
|- ( F : D --> CC -> F Fn D ) |
| 51 |
6 49 50
|
3syl |
|- ( ph -> F Fn D ) |
| 52 |
|
fnfvelrn |
|- ( ( F Fn D /\ z e. D ) -> ( F ` z ) e. ran F ) |
| 53 |
51 52
|
sylan |
|- ( ( ph /\ z e. D ) -> ( F ` z ) e. ran F ) |
| 54 |
|
eleq1 |
|- ( ( F ` z ) = y -> ( ( F ` z ) e. ran F <-> y e. ran F ) ) |
| 55 |
53 54
|
syl5ibcom |
|- ( ( ph /\ z e. D ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 56 |
48 55
|
syldan |
|- ( ( ph /\ z e. ( M [,] N ) ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 57 |
56
|
rexlimdva |
|- ( ph -> ( E. z e. ( M [,] N ) ( F ` z ) = y -> y e. ran F ) ) |
| 58 |
8 47 57
|
sylc |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> y e. ran F ) |
| 59 |
|
simplr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. ( ( F ` M ) [,] ( F ` N ) ) ) |
| 60 |
|
simpr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> M = N ) |
| 61 |
60
|
fveq2d |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) = ( F ` N ) ) |
| 62 |
61
|
oveq2d |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` M ) ) = ( ( F ` M ) [,] ( F ` N ) ) ) |
| 63 |
22
|
rexrd |
|- ( ph -> ( F ` M ) e. RR* ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) e. RR* ) |
| 65 |
|
iccid |
|- ( ( F ` M ) e. RR* -> ( ( F ` M ) [,] ( F ` M ) ) = { ( F ` M ) } ) |
| 66 |
64 65
|
syl |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` M ) ) = { ( F ` M ) } ) |
| 67 |
62 66
|
eqtr3d |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` N ) ) = { ( F ` M ) } ) |
| 68 |
59 67
|
eleqtrd |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. { ( F ` M ) } ) |
| 69 |
|
elsni |
|- ( y e. { ( F ` M ) } -> y = ( F ` M ) ) |
| 70 |
68 69
|
syl |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y = ( F ` M ) ) |
| 71 |
5 3
|
sseldd |
|- ( ph -> M e. D ) |
| 72 |
|
fnfvelrn |
|- ( ( F Fn D /\ M e. D ) -> ( F ` M ) e. ran F ) |
| 73 |
51 71 72
|
syl2anc |
|- ( ph -> ( F ` M ) e. ran F ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) e. ran F ) |
| 75 |
70 74
|
eqeltrd |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. ran F ) |
| 76 |
|
simpll |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ph ) |
| 77 |
17
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> N e. RR ) |
| 78 |
12
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> M e. RR ) |
| 79 |
28
|
adantr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> y e. RR ) |
| 80 |
|
simpr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> N < M ) |
| 81 |
16
|
simp2d |
|- ( ph -> A <_ N ) |
| 82 |
11
|
simp3d |
|- ( ph -> M <_ B ) |
| 83 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ N /\ M <_ B ) ) -> ( N [,] M ) C_ ( A [,] B ) ) |
| 84 |
1 2 81 82 83
|
syl22anc |
|- ( ph -> ( N [,] M ) C_ ( A [,] B ) ) |
| 85 |
84 5
|
sstrd |
|- ( ph -> ( N [,] M ) C_ D ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ( N [,] M ) C_ D ) |
| 87 |
6
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> F e. ( D -cn-> CC ) ) |
| 88 |
84
|
sselda |
|- ( ( ph /\ x e. ( N [,] M ) ) -> x e. ( A [,] B ) ) |
| 89 |
88 7
|
syldan |
|- ( ( ph /\ x e. ( N [,] M ) ) -> ( F ` x ) e. RR ) |
| 90 |
76 89
|
sylan |
|- ( ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) /\ x e. ( N [,] M ) ) -> ( F ` x ) e. RR ) |
| 91 |
45
|
adantr |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 92 |
77 78 79 80 86 87 90 91
|
ivthle2 |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> E. z e. ( N [,] M ) ( F ` z ) = y ) |
| 93 |
85
|
sselda |
|- ( ( ph /\ z e. ( N [,] M ) ) -> z e. D ) |
| 94 |
93 55
|
syldan |
|- ( ( ph /\ z e. ( N [,] M ) ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 95 |
94
|
rexlimdva |
|- ( ph -> ( E. z e. ( N [,] M ) ( F ` z ) = y -> y e. ran F ) ) |
| 96 |
76 92 95
|
sylc |
|- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> y e. ran F ) |
| 97 |
12 17
|
lttri4d |
|- ( ph -> ( M < N \/ M = N \/ N < M ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( M < N \/ M = N \/ N < M ) ) |
| 99 |
58 75 96 98
|
mpjao3dan |
|- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> y e. ran F ) |
| 100 |
99
|
ex |
|- ( ph -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) -> y e. ran F ) ) |
| 101 |
100
|
ssrdv |
|- ( ph -> ( ( F ` M ) [,] ( F ` N ) ) C_ ran F ) |