Metamath Proof Explorer


Theorem dya2iocbrsiga

Description: Dyadic intervals are Borel sets of RR . (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
Assertion dya2iocbrsiga N X X I N 𝔅

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 1 2 dya2iocival N X X I N = X 2 N X + 1 2 N
4 mnfxr −∞ *
5 4 a1i N X −∞ *
6 simpr N X X
7 6 zred N X X
8 2rp 2 +
9 8 a1i N X 2 +
10 simpl N X N
11 9 10 rpexpcld N X 2 N +
12 7 11 rerpdivcld N X X 2 N
13 12 rexrd N X X 2 N *
14 1red N X 1
15 7 14 readdcld N X X + 1
16 15 11 rerpdivcld N X X + 1 2 N
17 16 rexrd N X X + 1 2 N *
18 mnflt X 2 N −∞ < X 2 N
19 12 18 syl N X −∞ < X 2 N
20 difioo −∞ * X 2 N * X + 1 2 N * −∞ < X 2 N −∞ X + 1 2 N −∞ X 2 N = X 2 N X + 1 2 N
21 5 13 17 19 20 syl31anc N X −∞ X + 1 2 N −∞ X 2 N = X 2 N X + 1 2 N
22 brsigarn 𝔅 sigAlgebra
23 elrnsiga 𝔅 sigAlgebra 𝔅 ran sigAlgebra
24 22 23 ax-mp 𝔅 ran sigAlgebra
25 retop topGen ran . Top
26 iooretop −∞ X + 1 2 N topGen ran .
27 elsigagen topGen ran . Top −∞ X + 1 2 N topGen ran . −∞ X + 1 2 N 𝛔 topGen ran .
28 25 26 27 mp2an −∞ X + 1 2 N 𝛔 topGen ran .
29 df-brsiga 𝔅 = 𝛔 topGen ran .
30 28 29 eleqtrri −∞ X + 1 2 N 𝔅
31 iooretop −∞ X 2 N topGen ran .
32 elsigagen topGen ran . Top −∞ X 2 N topGen ran . −∞ X 2 N 𝛔 topGen ran .
33 25 31 32 mp2an −∞ X 2 N 𝛔 topGen ran .
34 33 29 eleqtrri −∞ X 2 N 𝔅
35 difelsiga 𝔅 ran sigAlgebra −∞ X + 1 2 N 𝔅 −∞ X 2 N 𝔅 −∞ X + 1 2 N −∞ X 2 N 𝔅
36 24 30 34 35 mp3an −∞ X + 1 2 N −∞ X 2 N 𝔅
37 21 36 eqeltrrdi N X X 2 N X + 1 2 N 𝔅
38 3 37 eqeltrd N X X I N 𝔅