Description: Dyadic intervals are Borel sets of RR . (Contributed by Thierry Arnoux, 22-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
Assertion | dya2iocbrsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | 1 2 | dya2iocival | |
4 | mnfxr | |
|
5 | 4 | a1i | |
6 | simpr | |
|
7 | 6 | zred | |
8 | 2rp | |
|
9 | 8 | a1i | |
10 | simpl | |
|
11 | 9 10 | rpexpcld | |
12 | 7 11 | rerpdivcld | |
13 | 12 | rexrd | |
14 | 1red | |
|
15 | 7 14 | readdcld | |
16 | 15 11 | rerpdivcld | |
17 | 16 | rexrd | |
18 | mnflt | |
|
19 | 12 18 | syl | |
20 | difioo | |
|
21 | 5 13 17 19 20 | syl31anc | |
22 | brsigarn | |
|
23 | elrnsiga | |
|
24 | 22 23 | ax-mp | |
25 | retop | |
|
26 | iooretop | |
|
27 | elsigagen | |
|
28 | 25 26 27 | mp2an | |
29 | df-brsiga | |
|
30 | 28 29 | eleqtrri | |
31 | iooretop | |
|
32 | elsigagen | |
|
33 | 25 31 32 | mp2an | |
34 | 33 29 | eleqtrri | |
35 | difelsiga | |
|
36 | 24 30 34 35 | mp3an | |
37 | 21 36 | eqeltrrdi | |
38 | 3 37 | eqeltrd | |