Metamath Proof Explorer


Theorem dya2iocbrsiga

Description: Dyadic intervals are Borel sets of RR . (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
Assertion dya2iocbrsiga NXXIN𝔅

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 1 2 dya2iocival NXXIN=X2NX+12N
4 mnfxr −∞*
5 4 a1i NX−∞*
6 simpr NXX
7 6 zred NXX
8 2rp 2+
9 8 a1i NX2+
10 simpl NXN
11 9 10 rpexpcld NX2N+
12 7 11 rerpdivcld NXX2N
13 12 rexrd NXX2N*
14 1red NX1
15 7 14 readdcld NXX+1
16 15 11 rerpdivcld NXX+12N
17 16 rexrd NXX+12N*
18 mnflt X2N−∞<X2N
19 12 18 syl NX−∞<X2N
20 difioo −∞*X2N*X+12N*−∞<X2N−∞X+12N−∞X2N=X2NX+12N
21 5 13 17 19 20 syl31anc NX−∞X+12N−∞X2N=X2NX+12N
22 brsigarn 𝔅sigAlgebra
23 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
24 22 23 ax-mp 𝔅ransigAlgebra
25 retop topGenran.Top
26 iooretop −∞X+12NtopGenran.
27 elsigagen topGenran.Top−∞X+12NtopGenran.−∞X+12N𝛔topGenran.
28 25 26 27 mp2an −∞X+12N𝛔topGenran.
29 df-brsiga 𝔅=𝛔topGenran.
30 28 29 eleqtrri −∞X+12N𝔅
31 iooretop −∞X2NtopGenran.
32 elsigagen topGenran.Top−∞X2NtopGenran.−∞X2N𝛔topGenran.
33 25 31 32 mp2an −∞X2N𝛔topGenran.
34 33 29 eleqtrri −∞X2N𝔅
35 difelsiga 𝔅ransigAlgebra−∞X+12N𝔅−∞X2N𝔅−∞X+12N−∞X2N𝔅
36 24 30 34 35 mp3an −∞X+12N−∞X2N𝔅
37 21 36 eqeltrrdi NXX2NX+12N𝔅
38 3 37 eqeltrd NXXIN𝔅