Metamath Proof Explorer


Theorem efgh

Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 11-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypothesis efgh.1 F=xXeAx
Assertion efgh AXSubGrpfldBXCXFB+C=FBFC

Proof

Step Hyp Ref Expression
1 efgh.1 F=xXeAx
2 simp1l AXSubGrpfldBXCXA
3 simp1r AXSubGrpfldBXCXXSubGrpfld
4 cnfldbas =Basefld
5 4 subgss XSubGrpfldX
6 3 5 syl AXSubGrpfldBXCXX
7 simp2 AXSubGrpfldBXCXBX
8 6 7 sseldd AXSubGrpfldBXCXB
9 simp3 AXSubGrpfldBXCXCX
10 6 9 sseldd AXSubGrpfldBXCXC
11 2 8 10 adddid AXSubGrpfldBXCXAB+C=AB+AC
12 11 fveq2d AXSubGrpfldBXCXeAB+C=eAB+AC
13 2 8 mulcld AXSubGrpfldBXCXAB
14 2 10 mulcld AXSubGrpfldBXCXAC
15 efadd ABACeAB+AC=eABeAC
16 13 14 15 syl2anc AXSubGrpfldBXCXeAB+AC=eABeAC
17 12 16 eqtrd AXSubGrpfldBXCXeAB+C=eABeAC
18 oveq2 x=yAx=Ay
19 18 fveq2d x=yeAx=eAy
20 19 cbvmptv xXeAx=yXeAy
21 1 20 eqtri F=yXeAy
22 oveq2 y=B+CAy=AB+C
23 22 fveq2d y=B+CeAy=eAB+C
24 cnfldadd +=+fld
25 24 subgcl XSubGrpfldBXCXB+CX
26 25 3adant1l AXSubGrpfldBXCXB+CX
27 fvexd AXSubGrpfldBXCXeAB+CV
28 21 23 26 27 fvmptd3 AXSubGrpfldBXCXFB+C=eAB+C
29 oveq2 y=BAy=AB
30 29 fveq2d y=BeAy=eAB
31 fvexd AXSubGrpfldBXCXeABV
32 21 30 7 31 fvmptd3 AXSubGrpfldBXCXFB=eAB
33 oveq2 y=CAy=AC
34 33 fveq2d y=CeAy=eAC
35 fvexd AXSubGrpfldBXCXeACV
36 21 34 9 35 fvmptd3 AXSubGrpfldBXCXFC=eAC
37 32 36 oveq12d AXSubGrpfldBXCXFBFC=eABeAC
38 17 28 37 3eqtr4d AXSubGrpfldBXCXFB+C=FBFC