| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgh.1 |
|
| 2 |
|
simp1l |
|
| 3 |
|
simp1r |
|
| 4 |
|
cnfldbas |
|
| 5 |
4
|
subgss |
|
| 6 |
3 5
|
syl |
|
| 7 |
|
simp2 |
|
| 8 |
6 7
|
sseldd |
|
| 9 |
|
simp3 |
|
| 10 |
6 9
|
sseldd |
|
| 11 |
2 8 10
|
adddid |
|
| 12 |
11
|
fveq2d |
|
| 13 |
2 8
|
mulcld |
|
| 14 |
2 10
|
mulcld |
|
| 15 |
|
efadd |
|
| 16 |
13 14 15
|
syl2anc |
|
| 17 |
12 16
|
eqtrd |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
fveq2d |
|
| 20 |
19
|
cbvmptv |
|
| 21 |
1 20
|
eqtri |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
cnfldadd |
|
| 25 |
24
|
subgcl |
|
| 26 |
25
|
3adant1l |
|
| 27 |
|
fvexd |
|
| 28 |
21 23 26 27
|
fvmptd3 |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
fveq2d |
|
| 31 |
|
fvexd |
|
| 32 |
21 30 7 31
|
fvmptd3 |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
fveq2d |
|
| 35 |
|
fvexd |
|
| 36 |
21 34 9 35
|
fvmptd3 |
|
| 37 |
32 36
|
oveq12d |
|
| 38 |
17 28 37
|
3eqtr4d |
|