Metamath Proof Explorer


Theorem efgredlemf

Description: Lemma for efgredleme . (Contributed by Mario Carneiro, 4-Jun-2016)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
efgredlemb.k K=A-1-1
efgredlemb.l L=B-1-1
Assertion efgredlemf φAKWBLW

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 efgredlemb.k K=A-1-1
13 efgredlemb.l L=B-1-1
14 1 2 3 4 5 6 efgsdm AdomSAWordWA0Di1..^AAiranTAi1
15 14 simp1bi AdomSAWordW
16 8 15 syl φAWordW
17 16 eldifad φAWordW
18 wrdf AWordWA:0..^AW
19 17 18 syl φA:0..^AW
20 fzossfz 0..^A10A1
21 lencl AWordWA0
22 17 21 syl φA0
23 22 nn0zd φA
24 fzoval A0..^A=0A1
25 23 24 syl φ0..^A=0A1
26 20 25 sseqtrrid φ0..^A10..^A
27 1 2 3 4 5 6 7 8 9 10 11 efgredlema φA1B1
28 27 simpld φA1
29 fzo0end A1A-1-10..^A1
30 28 29 syl φA-1-10..^A1
31 12 30 eqeltrid φK0..^A1
32 26 31 sseldd φK0..^A
33 19 32 ffvelcdmd φAKW
34 1 2 3 4 5 6 efgsdm BdomSBWordWB0Di1..^BBiranTBi1
35 34 simp1bi BdomSBWordW
36 9 35 syl φBWordW
37 36 eldifad φBWordW
38 wrdf BWordWB:0..^BW
39 37 38 syl φB:0..^BW
40 fzossfz 0..^B10B1
41 lencl BWordWB0
42 37 41 syl φB0
43 42 nn0zd φB
44 fzoval B0..^B=0B1
45 43 44 syl φ0..^B=0B1
46 40 45 sseqtrrid φ0..^B10..^B
47 fzo0end B1B-1-10..^B1
48 27 47 simpl2im φB-1-10..^B1
49 13 48 eqeltrid φL0..^B1
50 46 49 sseldd φL0..^B
51 39 50 ffvelcdmd φBLW
52 33 51 jca φAKWBLW