Metamath Proof Explorer


Theorem efgredleme

Description: Lemma for efgred . (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
efgredlemb.k K=A-1-1
efgredlemb.l L=B-1-1
efgredlemb.p φP0AK
efgredlemb.q φQ0BL
efgredlemb.u φUI×2𝑜
efgredlemb.v φVI×2𝑜
efgredlemb.6 φSA=PTAKU
efgredlemb.7 φSB=QTBLV
efgredlemb.8 φ¬AK=BL
efgredlemd.9 φPQ+2
efgredlemd.c φCdomS
efgredlemd.sc φSC=BLprefixQ++AKsubstrQ+2AK
Assertion efgredleme φAKranTSCBLranTSC

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 efgredlemb.k K=A-1-1
13 efgredlemb.l L=B-1-1
14 efgredlemb.p φP0AK
15 efgredlemb.q φQ0BL
16 efgredlemb.u φUI×2𝑜
17 efgredlemb.v φVI×2𝑜
18 efgredlemb.6 φSA=PTAKU
19 efgredlemb.7 φSB=QTBLV
20 efgredlemb.8 φ¬AK=BL
21 efgredlemd.9 φPQ+2
22 efgredlemd.c φCdomS
23 efgredlemd.sc φSC=BLprefixQ++AKsubstrQ+2AK
24 1 2 3 4 5 6 efgsf S:tWordW|t0Dk1..^ttkranTtk1W
25 24 fdmi domS=tWordW|t0Dk1..^ttkranTtk1
26 25 feq2i S:domSWS:tWordW|t0Dk1..^ttkranTtk1W
27 24 26 mpbir S:domSW
28 27 ffvelcdmi CdomSSCW
29 22 28 syl φSCW
30 elfzuz Q0BLQ0
31 15 30 syl φQ0
32 23 fveq2d φSC=BLprefixQ++AKsubstrQ+2AK
33 fviss IWordI×2𝑜WordI×2𝑜
34 1 33 eqsstri WWordI×2𝑜
35 1 2 3 4 5 6 7 8 9 10 11 12 13 efgredlemf φAKWBLW
36 35 simprd φBLW
37 34 36 sselid φBLWordI×2𝑜
38 pfxcl BLWordI×2𝑜BLprefixQWordI×2𝑜
39 37 38 syl φBLprefixQWordI×2𝑜
40 35 simpld φAKW
41 34 40 sselid φAKWordI×2𝑜
42 swrdcl AKWordI×2𝑜AKsubstrQ+2AKWordI×2𝑜
43 41 42 syl φAKsubstrQ+2AKWordI×2𝑜
44 ccatlen BLprefixQWordI×2𝑜AKsubstrQ+2AKWordI×2𝑜BLprefixQ++AKsubstrQ+2AK=BLprefixQ+AKsubstrQ+2AK
45 39 43 44 syl2anc φBLprefixQ++AKsubstrQ+2AK=BLprefixQ+AKsubstrQ+2AK
46 pfxlen BLWordI×2𝑜Q0BLBLprefixQ=Q
47 37 15 46 syl2anc φBLprefixQ=Q
48 2nn0 20
49 uzaddcl Q020Q+20
50 31 48 49 sylancl φQ+20
51 elfzuz3 P0AKAKP
52 14 51 syl φAKP
53 uztrn AKPPQ+2AKQ+2
54 52 21 53 syl2anc φAKQ+2
55 elfzuzb Q+20AKQ+20AKQ+2
56 50 54 55 sylanbrc φQ+20AK
57 lencl AKWordI×2𝑜AK0
58 41 57 syl φAK0
59 nn0uz 0=0
60 58 59 eleqtrdi φAK0
61 eluzfz2 AK0AK0AK
62 60 61 syl φAK0AK
63 swrdlen AKWordI×2𝑜Q+20AKAK0AKAKsubstrQ+2AK=AKQ+2
64 41 56 62 63 syl3anc φAKsubstrQ+2AK=AKQ+2
65 47 64 oveq12d φBLprefixQ+AKsubstrQ+2AK=Q+AK-Q+2
66 15 elfzelzd φQ
67 66 zcnd φQ
68 58 nn0cnd φAK
69 2z 2
70 zaddcl Q2Q+2
71 66 69 70 sylancl φQ+2
72 71 zcnd φQ+2
73 67 68 72 addsubassd φQ+AK-Q+2=Q+AK-Q+2
74 2cn 2
75 74 a1i φ2
76 67 68 75 pnpcand φQ+AK-Q+2=AK2
77 65 73 76 3eqtr2d φBLprefixQ+AKsubstrQ+2AK=AK2
78 32 45 77 3eqtrd φSC=AK2
79 14 elfzelzd φP
80 zsubcl P2P2
81 79 69 80 sylancl φP2
82 69 a1i φ2
83 79 zcnd φP
84 npcan P2P-2+2=P
85 83 74 84 sylancl φP-2+2=P
86 85 fveq2d φP-2+2=P
87 52 86 eleqtrrd φAKP-2+2
88 eluzsub P22AKP-2+2AK2P2
89 81 82 87 88 syl3anc φAK2P2
90 78 89 eqeltrd φSCP2
91 eluzsub Q2PQ+2P2Q
92 66 82 21 91 syl3anc φP2Q
93 uztrn SCP2P2QSCQ
94 90 92 93 syl2anc φSCQ
95 elfzuzb Q0SCQ0SCQ
96 31 94 95 sylanbrc φQ0SC
97 1 2 3 4 efgtval SCWQ0SCVI×2𝑜QTSCV=SCspliceQQ⟨“VMV”⟩
98 29 96 17 97 syl3anc φQTSCV=SCspliceQQ⟨“VMV”⟩
99 pfxcl AKWordI×2𝑜AKprefixQWordI×2𝑜
100 41 99 syl φAKprefixQWordI×2𝑜
101 wrd0 WordI×2𝑜
102 101 a1i φWordI×2𝑜
103 3 efgmf M:I×2𝑜I×2𝑜
104 103 ffvelcdmi VI×2𝑜MVI×2𝑜
105 17 104 syl φMVI×2𝑜
106 17 105 s2cld φ⟨“VMV”⟩WordI×2𝑜
107 66 zred φQ
108 nn0addge1 Q20QQ+2
109 107 48 108 sylancl φQQ+2
110 eluz2 Q+2QQQ+2QQ+2
111 66 71 109 110 syl3anbrc φQ+2Q
112 uztrn PQ+2Q+2QPQ
113 21 111 112 syl2anc φPQ
114 elfzuzb Q0PQ0PQ
115 31 113 114 sylanbrc φQ0P
116 ccatpfx AKWordI×2𝑜Q0PP0AKAKprefixQ++AKsubstrQP=AKprefixP
117 41 115 14 116 syl3anc φAKprefixQ++AKsubstrQP=AKprefixP
118 117 oveq1d φAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
119 pfxcl AKWordI×2𝑜AKprefixPWordI×2𝑜
120 41 119 syl φAKprefixPWordI×2𝑜
121 103 ffvelcdmi UI×2𝑜MUI×2𝑜
122 16 121 syl φMUI×2𝑜
123 16 122 s2cld φ⟨“UMU”⟩WordI×2𝑜
124 swrdcl AKWordI×2𝑜AKsubstrPAKWordI×2𝑜
125 41 124 syl φAKsubstrPAKWordI×2𝑜
126 ccatass AKprefixPWordI×2𝑜⟨“UMU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜AKprefixP++⟨“UMU”⟩++AKsubstrPAK=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
127 120 123 125 126 syl3anc φAKprefixP++⟨“UMU”⟩++AKsubstrPAK=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
128 1 2 3 4 efgtval AKWP0AKUI×2𝑜PTAKU=AKsplicePP⟨“UMU”⟩
129 40 14 16 128 syl3anc φPTAKU=AKsplicePP⟨“UMU”⟩
130 splval AKWP0AKP0AK⟨“UMU”⟩WordI×2𝑜AKsplicePP⟨“UMU”⟩=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
131 40 14 14 123 130 syl13anc φAKsplicePP⟨“UMU”⟩=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
132 18 129 131 3eqtrd φSA=AKprefixP++⟨“UMU”⟩++AKsubstrPAK
133 1 2 3 4 efgtval BLWQ0BLVI×2𝑜QTBLV=BLspliceQQ⟨“VMV”⟩
134 36 15 17 133 syl3anc φQTBLV=BLspliceQQ⟨“VMV”⟩
135 splval BLWQ0BLQ0BL⟨“VMV”⟩WordI×2𝑜BLspliceQQ⟨“VMV”⟩=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
136 36 15 15 106 135 syl13anc φBLspliceQQ⟨“VMV”⟩=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
137 19 134 136 3eqtrd φSB=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
138 10 132 137 3eqtr3d φAKprefixP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
139 118 127 138 3eqtr2d φAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
140 swrdcl AKWordI×2𝑜AKsubstrQPWordI×2𝑜
141 41 140 syl φAKsubstrQPWordI×2𝑜
142 ccatcl ⟨“UMU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
143 123 125 142 syl2anc φ⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
144 ccatass AKprefixQWordI×2𝑜AKsubstrQPWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜AKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=AKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK
145 100 141 143 144 syl3anc φAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=AKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK
146 swrdcl BLWordI×2𝑜BLsubstrQBLWordI×2𝑜
147 37 146 syl φBLsubstrQBLWordI×2𝑜
148 ccatass BLprefixQWordI×2𝑜⟨“VMV”⟩WordI×2𝑜BLsubstrQBLWordI×2𝑜BLprefixQ++⟨“VMV”⟩++BLsubstrQBL=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
149 39 106 147 148 syl3anc φBLprefixQ++⟨“VMV”⟩++BLsubstrQBL=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
150 139 145 149 3eqtr3d φAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBL
151 ccatcl AKsubstrQPWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜AKsubstrQP++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
152 141 143 151 syl2anc φAKsubstrQP++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
153 ccatcl ⟨“VMV”⟩WordI×2𝑜BLsubstrQBLWordI×2𝑜⟨“VMV”⟩++BLsubstrQBLWordI×2𝑜
154 106 147 153 syl2anc φ⟨“VMV”⟩++BLsubstrQBLWordI×2𝑜
155 uztrn AKPPQAKQ
156 52 113 155 syl2anc φAKQ
157 elfzuzb Q0AKQ0AKQ
158 31 156 157 sylanbrc φQ0AK
159 pfxlen AKWordI×2𝑜Q0AKAKprefixQ=Q
160 41 158 159 syl2anc φAKprefixQ=Q
161 160 47 eqtr4d φAKprefixQ=BLprefixQ
162 ccatopth AKprefixQWordI×2𝑜AKsubstrQP++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜BLprefixQWordI×2𝑜⟨“VMV”⟩++BLsubstrQBLWordI×2𝑜AKprefixQ=BLprefixQAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBLAKprefixQ=BLprefixQAKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBL
163 100 152 39 154 161 162 syl221anc φAKprefixQ++AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=BLprefixQ++⟨“VMV”⟩++BLsubstrQBLAKprefixQ=BLprefixQAKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBL
164 150 163 mpbid φAKprefixQ=BLprefixQAKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBL
165 164 simpld φAKprefixQ=BLprefixQ
166 165 oveq1d φAKprefixQ++AKsubstrQ+2AK=BLprefixQ++AKsubstrQ+2AK
167 ccatrid AKprefixQWordI×2𝑜AKprefixQ++=AKprefixQ
168 100 167 syl φAKprefixQ++=AKprefixQ
169 168 oveq1d φAKprefixQ++++AKsubstrQ+2AK=AKprefixQ++AKsubstrQ+2AK
170 166 169 23 3eqtr4rd φSC=AKprefixQ++++AKsubstrQ+2AK
171 160 eqcomd φQ=AKprefixQ
172 hash0 =0
173 172 oveq2i Q+=Q+0
174 67 addridd φQ+0=Q
175 173 174 eqtr2id φQ=Q+
176 100 102 43 106 170 171 175 splval2 φSCspliceQQ⟨“VMV”⟩=AKprefixQ++⟨“VMV”⟩++AKsubstrQ+2AK
177 elfzuzb Q0Q+2Q0Q+2Q
178 31 111 177 sylanbrc φQ0Q+2
179 elfzuzb Q+20PQ+20PQ+2
180 50 21 179 sylanbrc φQ+20P
181 ccatswrd AKWordI×2𝑜Q0Q+2Q+20PP0AKAKsubstrQQ+2++AKsubstrQ+2P=AKsubstrQP
182 41 178 180 14 181 syl13anc φAKsubstrQQ+2++AKsubstrQ+2P=AKsubstrQP
183 182 oveq1d φAKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=AKsubstrQP++⟨“UMU”⟩++AKsubstrPAK
184 swrdcl AKWordI×2𝑜AKsubstrQQ+2WordI×2𝑜
185 41 184 syl φAKsubstrQQ+2WordI×2𝑜
186 swrdcl AKWordI×2𝑜AKsubstrQ+2PWordI×2𝑜
187 41 186 syl φAKsubstrQ+2PWordI×2𝑜
188 ccatass AKsubstrQQ+2WordI×2𝑜AKsubstrQ+2PWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜AKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=AKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK
189 185 187 143 188 syl3anc φAKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=AKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK
190 164 simprd φAKsubstrQP++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBL
191 183 189 190 3eqtr3d φAKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBL
192 ccatcl AKsubstrQ+2PWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
193 187 143 192 syl2anc φAKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜
194 swrdlen AKWordI×2𝑜Q0Q+2Q+20AKAKsubstrQQ+2=Q+2-Q
195 41 178 56 194 syl3anc φAKsubstrQQ+2=Q+2-Q
196 pncan2 Q2Q+2-Q=2
197 67 74 196 sylancl φQ+2-Q=2
198 195 197 eqtrd φAKsubstrQQ+2=2
199 s2len ⟨“VMV”⟩=2
200 198 199 eqtr4di φAKsubstrQQ+2=⟨“VMV”⟩
201 ccatopth AKsubstrQQ+2WordI×2𝑜AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜⟨“VMV”⟩WordI×2𝑜BLsubstrQBLWordI×2𝑜AKsubstrQQ+2=⟨“VMV”⟩AKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBLAKsubstrQQ+2=⟨“VMV”⟩AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQBL
202 185 193 106 147 200 201 syl221anc φAKsubstrQQ+2++AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=⟨“VMV”⟩++BLsubstrQBLAKsubstrQQ+2=⟨“VMV”⟩AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQBL
203 191 202 mpbid φAKsubstrQQ+2=⟨“VMV”⟩AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQBL
204 203 simpld φAKsubstrQQ+2=⟨“VMV”⟩
205 204 oveq2d φAKprefixQ++AKsubstrQQ+2=AKprefixQ++⟨“VMV”⟩
206 ccatpfx AKWordI×2𝑜Q0Q+2Q+20AKAKprefixQ++AKsubstrQQ+2=AKprefixQ+2
207 41 178 56 206 syl3anc φAKprefixQ++AKsubstrQQ+2=AKprefixQ+2
208 205 207 eqtr3d φAKprefixQ++⟨“VMV”⟩=AKprefixQ+2
209 208 oveq1d φAKprefixQ++⟨“VMV”⟩++AKsubstrQ+2AK=AKprefixQ+2++AKsubstrQ+2AK
210 ccatpfx AKWordI×2𝑜Q+20AKAK0AKAKprefixQ+2++AKsubstrQ+2AK=AKprefixAK
211 41 56 62 210 syl3anc φAKprefixQ+2++AKsubstrQ+2AK=AKprefixAK
212 pfxid AKWordI×2𝑜AKprefixAK=AK
213 41 212 syl φAKprefixAK=AK
214 209 211 213 3eqtrd φAKprefixQ++⟨“VMV”⟩++AKsubstrQ+2AK=AK
215 98 176 214 3eqtrd φQTSCV=AK
216 1 2 3 4 efgtf SCWTSC=a0SC,iI×2𝑜SCspliceaa⟨“iMi”⟩TSC:0SC×I×2𝑜W
217 29 216 syl φTSC=a0SC,iI×2𝑜SCspliceaa⟨“iMi”⟩TSC:0SC×I×2𝑜W
218 217 simprd φTSC:0SC×I×2𝑜W
219 218 ffnd φTSCFn0SC×I×2𝑜
220 fnovrn TSCFn0SC×I×2𝑜Q0SCVI×2𝑜QTSCVranTSC
221 219 96 17 220 syl3anc φQTSCVranTSC
222 215 221 eqeltrrd φAKranTSC
223 uztrn P2QQ0P20
224 92 31 223 syl2anc φP20
225 elfzuzb P20SCP20SCP2
226 224 90 225 sylanbrc φP20SC
227 1 2 3 4 efgtval SCWP20SCUI×2𝑜P2TSCU=SCspliceP2P2⟨“UMU”⟩
228 29 226 16 227 syl3anc φP2TSCU=SCspliceP2P2⟨“UMU”⟩
229 pfxcl BLWordI×2𝑜BLprefixP2WordI×2𝑜
230 37 229 syl φBLprefixP2WordI×2𝑜
231 swrdcl BLWordI×2𝑜BLsubstrPBLWordI×2𝑜
232 37 231 syl φBLsubstrPBLWordI×2𝑜
233 ccatswrd AKWordI×2𝑜Q+20PP0AKAK0AKAKsubstrQ+2P++AKsubstrPAK=AKsubstrQ+2AK
234 41 180 14 62 233 syl13anc φAKsubstrQ+2P++AKsubstrPAK=AKsubstrQ+2AK
235 203 simprd φAKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQBL
236 elfzuzb Q0P2Q0P2Q
237 31 92 236 sylanbrc φQ0P2
238 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 efgredlemg φAK=BL
239 238 52 eqeltrrd φBLP
240 0le2 02
241 240 a1i φ02
242 79 zred φP
243 2re 2
244 subge02 P202P2P
245 242 243 244 sylancl φ02P2P
246 241 245 mpbid φP2P
247 eluz2 PP2P2PP2P
248 81 79 246 247 syl3anbrc φPP2
249 uztrn BLPPP2BLP2
250 239 248 249 syl2anc φBLP2
251 elfzuzb P20BLP20BLP2
252 224 250 251 sylanbrc φP20BL
253 lencl BLWordI×2𝑜BL0
254 37 253 syl φBL0
255 254 59 eleqtrdi φBL0
256 eluzfz2 BL0BL0BL
257 255 256 syl φBL0BL
258 ccatswrd BLWordI×2𝑜Q0P2P20BLBL0BLBLsubstrQP2++BLsubstrP2BL=BLsubstrQBL
259 37 237 252 257 258 syl13anc φBLsubstrQP2++BLsubstrP2BL=BLsubstrQBL
260 235 259 eqtr4d φAKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQP2++BLsubstrP2BL
261 swrdcl BLWordI×2𝑜BLsubstrQP2WordI×2𝑜
262 37 261 syl φBLsubstrQP2WordI×2𝑜
263 swrdcl BLWordI×2𝑜BLsubstrP2BLWordI×2𝑜
264 37 263 syl φBLsubstrP2BLWordI×2𝑜
265 swrdlen AKWordI×2𝑜Q+20PP0AKAKsubstrQ+2P=PQ+2
266 41 180 14 265 syl3anc φAKsubstrQ+2P=PQ+2
267 swrdlen BLWordI×2𝑜Q0P2P20BLBLsubstrQP2=P-2-Q
268 37 237 252 267 syl3anc φBLsubstrQP2=P-2-Q
269 83 67 75 sub32d φP-Q-2=P-2-Q
270 83 67 75 subsub4d φP-Q-2=PQ+2
271 268 269 270 3eqtr2d φBLsubstrQP2=PQ+2
272 266 271 eqtr4d φAKsubstrQ+2P=BLsubstrQP2
273 ccatopth AKsubstrQ+2PWordI×2𝑜⟨“UMU”⟩++AKsubstrPAKWordI×2𝑜BLsubstrQP2WordI×2𝑜BLsubstrP2BLWordI×2𝑜AKsubstrQ+2P=BLsubstrQP2AKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQP2++BLsubstrP2BLAKsubstrQ+2P=BLsubstrQP2⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2BL
274 187 143 262 264 272 273 syl221anc φAKsubstrQ+2P++⟨“UMU”⟩++AKsubstrPAK=BLsubstrQP2++BLsubstrP2BLAKsubstrQ+2P=BLsubstrQP2⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2BL
275 260 274 mpbid φAKsubstrQ+2P=BLsubstrQP2⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2BL
276 275 simpld φAKsubstrQ+2P=BLsubstrQP2
277 275 simprd φ⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2BL
278 elfzuzb P20PP20PP2
279 224 248 278 sylanbrc φP20P
280 elfzuz P0AKP0
281 14 280 syl φP0
282 elfzuzb P0BLP0BLP
283 281 239 282 sylanbrc φP0BL
284 ccatswrd BLWordI×2𝑜P20PP0BLBL0BLBLsubstrP2P++BLsubstrPBL=BLsubstrP2BL
285 37 279 283 257 284 syl13anc φBLsubstrP2P++BLsubstrPBL=BLsubstrP2BL
286 277 285 eqtr4d φ⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2P++BLsubstrPBL
287 swrdcl BLWordI×2𝑜BLsubstrP2PWordI×2𝑜
288 37 287 syl φBLsubstrP2PWordI×2𝑜
289 s2len ⟨“UMU”⟩=2
290 swrdlen BLWordI×2𝑜P20PP0BLBLsubstrP2P=PP2
291 37 279 283 290 syl3anc φBLsubstrP2P=PP2
292 nncan P2PP2=2
293 83 74 292 sylancl φPP2=2
294 291 293 eqtr2d φ2=BLsubstrP2P
295 289 294 eqtrid φ⟨“UMU”⟩=BLsubstrP2P
296 ccatopth ⟨“UMU”⟩WordI×2𝑜AKsubstrPAKWordI×2𝑜BLsubstrP2PWordI×2𝑜BLsubstrPBLWordI×2𝑜⟨“UMU”⟩=BLsubstrP2P⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2P++BLsubstrPBL⟨“UMU”⟩=BLsubstrP2PAKsubstrPAK=BLsubstrPBL
297 123 125 288 232 295 296 syl221anc φ⟨“UMU”⟩++AKsubstrPAK=BLsubstrP2P++BLsubstrPBL⟨“UMU”⟩=BLsubstrP2PAKsubstrPAK=BLsubstrPBL
298 286 297 mpbid φ⟨“UMU”⟩=BLsubstrP2PAKsubstrPAK=BLsubstrPBL
299 298 simprd φAKsubstrPAK=BLsubstrPBL
300 276 299 oveq12d φAKsubstrQ+2P++AKsubstrPAK=BLsubstrQP2++BLsubstrPBL
301 234 300 eqtr3d φAKsubstrQ+2AK=BLsubstrQP2++BLsubstrPBL
302 301 oveq2d φBLprefixQ++AKsubstrQ+2AK=BLprefixQ++BLsubstrQP2++BLsubstrPBL
303 ccatass BLprefixQWordI×2𝑜BLsubstrQP2WordI×2𝑜BLsubstrPBLWordI×2𝑜BLprefixQ++BLsubstrQP2++BLsubstrPBL=BLprefixQ++BLsubstrQP2++BLsubstrPBL
304 39 262 232 303 syl3anc φBLprefixQ++BLsubstrQP2++BLsubstrPBL=BLprefixQ++BLsubstrQP2++BLsubstrPBL
305 302 304 eqtr4d φBLprefixQ++AKsubstrQ+2AK=BLprefixQ++BLsubstrQP2++BLsubstrPBL
306 ccatpfx BLWordI×2𝑜Q0P2P20BLBLprefixQ++BLsubstrQP2=BLprefixP2
307 37 237 252 306 syl3anc φBLprefixQ++BLsubstrQP2=BLprefixP2
308 307 oveq1d φBLprefixQ++BLsubstrQP2++BLsubstrPBL=BLprefixP2++BLsubstrPBL
309 23 305 308 3eqtrd φSC=BLprefixP2++BLsubstrPBL
310 ccatrid BLprefixP2WordI×2𝑜BLprefixP2++=BLprefixP2
311 230 310 syl φBLprefixP2++=BLprefixP2
312 311 oveq1d φBLprefixP2++++BLsubstrPBL=BLprefixP2++BLsubstrPBL
313 309 312 eqtr4d φSC=BLprefixP2++++BLsubstrPBL
314 pfxlen BLWordI×2𝑜P20BLBLprefixP2=P2
315 37 252 314 syl2anc φBLprefixP2=P2
316 315 eqcomd φP2=BLprefixP2
317 172 oveq2i P-2+=P-2+0
318 81 zcnd φP2
319 318 addridd φP-2+0=P2
320 317 319 eqtr2id φP2=P-2+
321 230 102 232 123 313 316 320 splval2 φSCspliceP2P2⟨“UMU”⟩=BLprefixP2++⟨“UMU”⟩++BLsubstrPBL
322 298 simpld φ⟨“UMU”⟩=BLsubstrP2P
323 322 oveq2d φBLprefixP2++⟨“UMU”⟩=BLprefixP2++BLsubstrP2P
324 ccatpfx BLWordI×2𝑜P20PP0BLBLprefixP2++BLsubstrP2P=BLprefixP
325 37 279 283 324 syl3anc φBLprefixP2++BLsubstrP2P=BLprefixP
326 323 325 eqtrd φBLprefixP2++⟨“UMU”⟩=BLprefixP
327 326 oveq1d φBLprefixP2++⟨“UMU”⟩++BLsubstrPBL=BLprefixP++BLsubstrPBL
328 ccatpfx BLWordI×2𝑜P0BLBL0BLBLprefixP++BLsubstrPBL=BLprefixBL
329 37 283 257 328 syl3anc φBLprefixP++BLsubstrPBL=BLprefixBL
330 pfxid BLWordI×2𝑜BLprefixBL=BL
331 37 330 syl φBLprefixBL=BL
332 327 329 331 3eqtrd φBLprefixP2++⟨“UMU”⟩++BLsubstrPBL=BL
333 228 321 332 3eqtrd φP2TSCU=BL
334 fnovrn TSCFn0SC×I×2𝑜P20SCUI×2𝑜P2TSCUranTSC
335 219 226 16 334 syl3anc φP2TSCUranTSC
336 333 335 eqeltrrd φBLranTSC
337 222 336 jca φAKranTSCBLranTSC