Metamath Proof Explorer


Theorem eigvalcl

Description: An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigvalcl T:AeigvecTeigvalTA

Proof

Step Hyp Ref Expression
1 eigvalval T:AeigvecTeigvalTA=TAihAnormA2
2 eleigveccl T:AeigvecTA
3 ffvelcdm T:ATA
4 hicl TAATAihA
5 3 4 sylancom T:ATAihA
6 2 5 syldan T:AeigvecTTAihA
7 normcl AnormA
8 7 recnd AnormA
9 2 8 syl T:AeigvecTnormA
10 9 sqcld T:AeigvecTnormA2
11 eleigvec T:AeigvecTAA0xTA=xA
12 11 biimpa T:AeigvecTAA0xTA=xA
13 sqne0 normAnormA20normA0
14 8 13 syl AnormA20normA0
15 normne0 AnormA0A0
16 14 15 bitr2d AA0normA20
17 16 biimpa AA0normA20
18 17 3adant3 AA0xTA=xAnormA20
19 12 18 syl T:AeigvecTnormA20
20 6 10 19 divcld T:AeigvecTTAihAnormA2
21 1 20 eqeltrd T:AeigvecTeigvalTA