Metamath Proof Explorer


Theorem elflim2

Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimval.1 X=J
Assertion elflim2 AJfLimFJTopFranFilF𝒫XAXneiJAF

Proof

Step Hyp Ref Expression
1 flimval.1 X=J
2 anass JTopFranFilF𝒫XAXneiJAFJTopFranFilF𝒫XAXneiJAF
3 df-3an JTopFranFilF𝒫XJTopFranFilF𝒫X
4 3 anbi1i JTopFranFilF𝒫XAXneiJAFJTopFranFilF𝒫XAXneiJAF
5 df-flim fLim=jTop,franFilxj|neijxff𝒫j
6 5 elmpocl AJfLimFJTopFranFil
7 1 flimval JTopFranFilJfLimF=xX|neiJxFF𝒫X
8 7 eleq2d JTopFranFilAJfLimFAxX|neiJxFF𝒫X
9 sneq x=Ax=A
10 9 fveq2d x=AneiJx=neiJA
11 10 sseq1d x=AneiJxFneiJAF
12 11 anbi1d x=AneiJxFF𝒫XneiJAFF𝒫X
13 12 biancomd x=AneiJxFF𝒫XF𝒫XneiJAF
14 13 elrab AxX|neiJxFF𝒫XAXF𝒫XneiJAF
15 an12 AXF𝒫XneiJAFF𝒫XAXneiJAF
16 14 15 bitri AxX|neiJxFF𝒫XF𝒫XAXneiJAF
17 8 16 bitrdi JTopFranFilAJfLimFF𝒫XAXneiJAF
18 6 17 biadanii AJfLimFJTopFranFilF𝒫XAXneiJAF
19 2 4 18 3bitr4ri AJfLimFJTopFranFilF𝒫XAXneiJAF