Metamath Proof Explorer


Theorem elghomlem1OLD

Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis elghomlem1OLD.1 S=f|f:ranGranHxranGyranGfxHfy=fxGy
Assertion elghomlem1OLD GGrpOpHGrpOpGGrpOpHomH=S

Proof

Step Hyp Ref Expression
1 elghomlem1OLD.1 S=f|f:ranGranHxranGyranGfxHfy=fxGy
2 rnexg GGrpOpranGV
3 rnexg HGrpOpranHV
4 1 fabexg ranGVranHVSV
5 2 3 4 syl2an GGrpOpHGrpOpSV
6 rneq g=Grang=ranG
7 6 feq2d g=Gf:rangranhf:ranGranh
8 oveq g=Gxgy=xGy
9 8 fveq2d g=Gfxgy=fxGy
10 9 eqeq2d g=Gfxhfy=fxgyfxhfy=fxGy
11 6 10 raleqbidv g=Gyrangfxhfy=fxgyyranGfxhfy=fxGy
12 6 11 raleqbidv g=Gxrangyrangfxhfy=fxgyxranGyranGfxhfy=fxGy
13 7 12 anbi12d g=Gf:rangranhxrangyrangfxhfy=fxgyf:ranGranhxranGyranGfxhfy=fxGy
14 13 abbidv g=Gf|f:rangranhxrangyrangfxhfy=fxgy=f|f:ranGranhxranGyranGfxhfy=fxGy
15 rneq h=Hranh=ranH
16 15 feq3d h=Hf:ranGranhf:ranGranH
17 oveq h=Hfxhfy=fxHfy
18 17 eqeq1d h=Hfxhfy=fxGyfxHfy=fxGy
19 18 2ralbidv h=HxranGyranGfxhfy=fxGyxranGyranGfxHfy=fxGy
20 16 19 anbi12d h=Hf:ranGranhxranGyranGfxhfy=fxGyf:ranGranHxranGyranGfxHfy=fxGy
21 20 abbidv h=Hf|f:ranGranhxranGyranGfxhfy=fxGy=f|f:ranGranHxranGyranGfxHfy=fxGy
22 21 1 eqtr4di h=Hf|f:ranGranhxranGyranGfxhfy=fxGy=S
23 df-ghomOLD GrpOpHom=gGrpOp,hGrpOpf|f:rangranhxrangyrangfxhfy=fxgy
24 14 22 23 ovmpog GGrpOpHGrpOpSVGGrpOpHomH=S
25 5 24 mpd3an3 GGrpOpHGrpOpGGrpOpHomH=S