Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Proof shortened by AV, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ellcoellss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | lssss | |
5 | 4 | 3ad2ant2 | |
6 | sstr | |
|
7 | fvex | |
|
8 | 7 | ssex | |
9 | elpwg | |
|
10 | 9 | biimprd | |
11 | 8 10 | mpcom | |
12 | 6 11 | syl | |
13 | 12 | ex | |
14 | 13 | 3ad2ant3 | |
15 | 5 14 | mpd | |
16 | eqid | |
|
17 | eqid | |
|
18 | 2 16 17 | lcoval | |
19 | 1 15 18 | syl2anc | |
20 | lincellss | |
|
21 | 20 | imp | |
22 | eleq1 | |
|
23 | 21 22 | imbitrrid | |
24 | 23 | expd | |
25 | 24 | com12 | |
26 | 25 | adantr | |
27 | 26 | com13 | |
28 | 27 | impr | |
29 | 28 | rexlimiva | |
30 | 29 | com12 | |
31 | 30 | expimpd | |
32 | 19 31 | sylbid | |
33 | 32 | ralrimiv | |