Metamath Proof Explorer


Theorem ellcoellss

Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion ellcoellss MLModSLSubSpMVSxMLinCoVxS

Proof

Step Hyp Ref Expression
1 simp1 MLModSLSubSpMVSMLMod
2 eqid BaseM=BaseM
3 eqid LSubSpM=LSubSpM
4 2 3 lssss SLSubSpMSBaseM
5 4 3ad2ant2 MLModSLSubSpMVSSBaseM
6 sstr VSSBaseMVBaseM
7 fvex BaseMV
8 7 ssex VBaseMVV
9 elpwg VVV𝒫BaseMVBaseM
10 9 biimprd VVVBaseMV𝒫BaseM
11 8 10 mpcom VBaseMV𝒫BaseM
12 6 11 syl VSSBaseMV𝒫BaseM
13 12 ex VSSBaseMV𝒫BaseM
14 13 3ad2ant3 MLModSLSubSpMVSSBaseMV𝒫BaseM
15 5 14 mpd MLModSLSubSpMVSV𝒫BaseM
16 eqid ScalarM=ScalarM
17 eqid BaseScalarM=BaseScalarM
18 2 16 17 lcoval MLModV𝒫BaseMxMLinCoVxBaseMfBaseScalarMVfinSupp0ScalarMfx=flinCMV
19 1 15 18 syl2anc MLModSLSubSpMVSxMLinCoVxBaseMfBaseScalarMVfinSupp0ScalarMfx=flinCMV
20 lincellss MLModSLSubSpMVSfBaseScalarMVfinSupp0ScalarMfflinCMVS
21 20 imp MLModSLSubSpMVSfBaseScalarMVfinSupp0ScalarMfflinCMVS
22 eleq1 x=flinCMVxSflinCMVS
23 21 22 imbitrrid x=flinCMVMLModSLSubSpMVSfBaseScalarMVfinSupp0ScalarMfxS
24 23 expd x=flinCMVMLModSLSubSpMVSfBaseScalarMVfinSupp0ScalarMfxS
25 24 com12 MLModSLSubSpMVSx=flinCMVfBaseScalarMVfinSupp0ScalarMfxS
26 25 adantr MLModSLSubSpMVSxBaseMx=flinCMVfBaseScalarMVfinSupp0ScalarMfxS
27 26 com13 fBaseScalarMVfinSupp0ScalarMfx=flinCMVMLModSLSubSpMVSxBaseMxS
28 27 impr fBaseScalarMVfinSupp0ScalarMfx=flinCMVMLModSLSubSpMVSxBaseMxS
29 28 rexlimiva fBaseScalarMVfinSupp0ScalarMfx=flinCMVMLModSLSubSpMVSxBaseMxS
30 29 com12 MLModSLSubSpMVSxBaseMfBaseScalarMVfinSupp0ScalarMfx=flinCMVxS
31 30 expimpd MLModSLSubSpMVSxBaseMfBaseScalarMVfinSupp0ScalarMfx=flinCMVxS
32 19 31 sylbid MLModSLSubSpMVSxMLinCoVxS
33 32 ralrimiv MLModSLSubSpMVSxMLinCoVxS