Metamath Proof Explorer


Theorem ellimits

Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis ellimits.1 AV
Assertion ellimits A𝖫𝗂𝗆𝗂𝗍𝗌LimA

Proof

Step Hyp Ref Expression
1 ellimits.1 AV
2 df-limits 𝖫𝗂𝗆𝗂𝗍𝗌=On𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉
3 2 eleq2i A𝖫𝗂𝗆𝗂𝗍𝗌AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉
4 eldif AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉¬A
5 3anan32 OrdAAA=AOrdAA=AA
6 df-lim LimAOrdAAA=A
7 elin AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉AOnA𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉
8 1 elon AOnOrdA
9 1 elfix A𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉A𝖡𝗂𝗀𝖼𝗎𝗉A
10 1 brbigcup A𝖡𝗂𝗀𝖼𝗎𝗉AA=A
11 eqcom A=AA=A
12 9 10 11 3bitri A𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉A=A
13 8 12 anbi12i AOnA𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉OrdAA=A
14 7 13 bitri AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉OrdAA=A
15 1 elsn AA=
16 15 necon3bbii ¬AA
17 14 16 anbi12i AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉¬AOrdAA=AA
18 5 6 17 3bitr4ri AOn𝖥𝗂𝗑𝖡𝗂𝗀𝖼𝗎𝗉¬ALimA
19 3 4 18 3bitri A𝖫𝗂𝗆𝗂𝗍𝗌LimA