Metamath Proof Explorer


Theorem ellspds

Description: Variation on ellspd . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses ellspds.n N=LSpanM
ellspds.v B=BaseM
ellspds.k K=BaseS
ellspds.s S=ScalarM
ellspds.z 0˙=0S
ellspds.t ·˙=M
ellspds.m φMLMod
ellspds.1 φVB
Assertion ellspds φXNVaKVfinSupp0˙aX=MvVav·˙v

Proof

Step Hyp Ref Expression
1 ellspds.n N=LSpanM
2 ellspds.v B=BaseM
3 ellspds.k K=BaseS
4 ellspds.s S=ScalarM
5 ellspds.z 0˙=0S
6 ellspds.t ·˙=M
7 ellspds.m φMLMod
8 ellspds.1 φVB
9 f1oi IV:V1-1 ontoV
10 f1of IV:V1-1 ontoVIV:VV
11 9 10 mp1i φIV:VV
12 11 8 fssd φIV:VB
13 2 fvexi BV
14 13 a1i φBV
15 14 8 ssexd φVV
16 1 2 3 4 5 6 12 7 15 ellspd φXNIVVaKVfinSupp0˙aX=Ma·˙fIV
17 ssid VV
18 resiima VVIVV=V
19 17 18 mp1i φIVV=V
20 19 fveq2d φNIVV=NV
21 20 eleq2d φXNIVVXNV
22 elmapfn aKVaFnV
23 22 adantl φaKVaFnV
24 9 10 mp1i φaKVIV:VV
25 24 ffnd φaKVIVFnV
26 15 adantr φaKVVV
27 inidm VV=V
28 eqidd φaKVvVav=av
29 fvresi vVIVv=v
30 29 adantl φaKVvVIVv=v
31 23 25 26 26 27 28 30 offval φaKVa·˙fIV=vVav·˙v
32 31 oveq2d φaKVMa·˙fIV=MvVav·˙v
33 32 eqeq2d φaKVX=Ma·˙fIVX=MvVav·˙v
34 33 anbi2d φaKVfinSupp0˙aX=Ma·˙fIVfinSupp0˙aX=MvVav·˙v
35 34 rexbidva φaKVfinSupp0˙aX=Ma·˙fIVaKVfinSupp0˙aX=MvVav·˙v
36 16 21 35 3bitr3d φXNVaKVfinSupp0˙aX=MvVav·˙v