Description: Variation on ellspd . (Contributed by Thierry Arnoux, 18-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ellspds.n | |
|
ellspds.v | |
||
ellspds.k | |
||
ellspds.s | |
||
ellspds.z | |
||
ellspds.t | |
||
ellspds.m | |
||
ellspds.1 | |
||
Assertion | ellspds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspds.n | |
|
2 | ellspds.v | |
|
3 | ellspds.k | |
|
4 | ellspds.s | |
|
5 | ellspds.z | |
|
6 | ellspds.t | |
|
7 | ellspds.m | |
|
8 | ellspds.1 | |
|
9 | f1oi | |
|
10 | f1of | |
|
11 | 9 10 | mp1i | |
12 | 11 8 | fssd | |
13 | 2 | fvexi | |
14 | 13 | a1i | |
15 | 14 8 | ssexd | |
16 | 1 2 3 4 5 6 12 7 15 | ellspd | |
17 | ssid | |
|
18 | resiima | |
|
19 | 17 18 | mp1i | |
20 | 19 | fveq2d | |
21 | 20 | eleq2d | |
22 | elmapfn | |
|
23 | 22 | adantl | |
24 | 9 10 | mp1i | |
25 | 24 | ffnd | |
26 | 15 | adantr | |
27 | inidm | |
|
28 | eqidd | |
|
29 | fvresi | |
|
30 | 29 | adantl | |
31 | 23 25 26 26 27 28 30 | offval | |
32 | 31 | oveq2d | |
33 | 32 | eqeq2d | |
34 | 33 | anbi2d | |
35 | 34 | rexbidva | |
36 | 16 21 35 | 3bitr3d | |