Metamath Proof Explorer


Theorem elnlfn

Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elnlfn T:AnullTATA=0

Proof

Step Hyp Ref Expression
1 nlfnval T:nullT=T-10
2 cnvimass T-10domT
3 1 2 eqsstrdi T:nullTdomT
4 fdm T:domT=
5 3 4 sseqtrd T:nullT
6 5 sseld T:AnullTA
7 6 pm4.71rd T:AnullTAAnullT
8 1 eleq2d T:AnullTAT-10
9 8 adantr T:AAnullTAT-10
10 ffn T:TFn
11 eleq1 x=AxT-10AT-10
12 fveqeq2 x=ATx=0TA=0
13 11 12 bibi12d x=AxT-10Tx=0AT-10TA=0
14 13 imbi2d x=ATFnxT-10Tx=0TFnAT-10TA=0
15 0cn 0
16 vex xV
17 16 eliniseg 0xT-10xT0
18 15 17 ax-mp xT-10xT0
19 fnbrfvb TFnxTx=0xT0
20 18 19 bitr4id TFnxxT-10Tx=0
21 20 expcom xTFnxT-10Tx=0
22 14 21 vtoclga ATFnAT-10TA=0
23 10 22 mpan9 T:AAT-10TA=0
24 9 23 bitrd T:AAnullTTA=0
25 24 pm5.32da T:AAnullTATA=0
26 7 25 bitrd T:AnullTATA=0