Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elnn0rabdioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset | |
|
2 | 1 | rabbii | |
3 | 2 | a1i | |
4 | nfcv | |
|
5 | nfcv | |
|
6 | nfv | |
|
7 | nfcv | |
|
8 | nfcsb1v | |
|
9 | 8 | nfeq2 | |
10 | 7 9 | nfrexw | |
11 | csbeq1a | |
|
12 | 11 | eqeq2d | |
13 | 12 | rexbidv | |
14 | 4 5 6 10 13 | cbvrabw | |
15 | 3 14 | eqtrdi | |
16 | peano2nn0 | |
|
17 | 16 | adantr | |
18 | ovex | |
|
19 | nn0p1nn | |
|
20 | elfz1end | |
|
21 | 19 20 | sylib | |
22 | 21 | adantr | |
23 | mzpproj | |
|
24 | 18 22 23 | sylancr | |
25 | eqid | |
|
26 | 25 | rabdiophlem2 | |
27 | eqrabdioph | |
|
28 | 17 24 26 27 | syl3anc | |
29 | eqeq1 | |
|
30 | csbeq1 | |
|
31 | 30 | eqeq2d | |
32 | 25 29 31 | rexrabdioph | |
33 | 28 32 | syldan | |
34 | 15 33 | eqeltrd | |