Metamath Proof Explorer


Theorem elq

Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002) (Revised by Mario Carneiro, 28-Jan-2014)

Ref Expression
Assertion elq AxyA=xy

Proof

Step Hyp Ref Expression
1 df-q =÷×
2 1 eleq2i AA÷×
3 df-div ÷=x,y0ιz|yz=x
4 riotaex ιz|yz=xV
5 3 4 fnmpoi ÷Fn×0
6 zsscn
7 nncn xx
8 nnne0 xx0
9 eldifsn x0xx0
10 7 8 9 sylanbrc xx0
11 10 ssriv 0
12 xpss12 0××0
13 6 11 12 mp2an ××0
14 ovelimab ÷Fn×0××0A÷×xyA=xy
15 5 13 14 mp2an A÷×xyA=xy
16 2 15 bitri AxyA=xy