Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 , elxp6 , and elxp7 . (Contributed by NM, 17-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | elxp4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp | |
|
2 | sneq | |
|
3 | 2 | rneqd | |
4 | 3 | unieqd | |
5 | vex | |
|
6 | vex | |
|
7 | 5 6 | op2nda | |
8 | 4 7 | eqtr2di | |
9 | 8 | pm4.71ri | |
10 | 9 | anbi1i | |
11 | anass | |
|
12 | 10 11 | bitri | |
13 | 12 | exbii | |
14 | snex | |
|
15 | 14 | rnex | |
16 | 15 | uniex | |
17 | opeq2 | |
|
18 | 17 | eqeq2d | |
19 | eleq1 | |
|
20 | 19 | anbi2d | |
21 | 18 20 | anbi12d | |
22 | 16 21 | ceqsexv | |
23 | 13 22 | bitri | |
24 | sneq | |
|
25 | 24 | dmeqd | |
26 | 25 | unieqd | |
27 | 5 16 | op1sta | |
28 | 26 27 | eqtr2di | |
29 | 28 | pm4.71ri | |
30 | 29 | anbi1i | |
31 | anass | |
|
32 | 23 30 31 | 3bitri | |
33 | 32 | exbii | |
34 | 14 | dmex | |
35 | 34 | uniex | |
36 | opeq1 | |
|
37 | 36 | eqeq2d | |
38 | eleq1 | |
|
39 | 38 | anbi1d | |
40 | 37 39 | anbi12d | |
41 | 35 40 | ceqsexv | |
42 | 1 33 41 | 3bitri | |