Metamath Proof Explorer


Theorem elxp4

Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 , elxp6 , and elxp7 . (Contributed by NM, 17-Feb-2004)

Ref Expression
Assertion elxp4 A B × C A = dom A ran A dom A B ran A C

Proof

Step Hyp Ref Expression
1 elxp A B × C x y A = x y x B y C
2 sneq A = x y A = x y
3 2 rneqd A = x y ran A = ran x y
4 3 unieqd A = x y ran A = ran x y
5 vex x V
6 vex y V
7 5 6 op2nda ran x y = y
8 4 7 eqtr2di A = x y y = ran A
9 8 pm4.71ri A = x y y = ran A A = x y
10 9 anbi1i A = x y x B y C y = ran A A = x y x B y C
11 anass y = ran A A = x y x B y C y = ran A A = x y x B y C
12 10 11 bitri A = x y x B y C y = ran A A = x y x B y C
13 12 exbii y A = x y x B y C y y = ran A A = x y x B y C
14 snex A V
15 14 rnex ran A V
16 15 uniex ran A V
17 opeq2 y = ran A x y = x ran A
18 17 eqeq2d y = ran A A = x y A = x ran A
19 eleq1 y = ran A y C ran A C
20 19 anbi2d y = ran A x B y C x B ran A C
21 18 20 anbi12d y = ran A A = x y x B y C A = x ran A x B ran A C
22 16 21 ceqsexv y y = ran A A = x y x B y C A = x ran A x B ran A C
23 13 22 bitri y A = x y x B y C A = x ran A x B ran A C
24 sneq A = x ran A A = x ran A
25 24 dmeqd A = x ran A dom A = dom x ran A
26 25 unieqd A = x ran A dom A = dom x ran A
27 5 16 op1sta dom x ran A = x
28 26 27 eqtr2di A = x ran A x = dom A
29 28 pm4.71ri A = x ran A x = dom A A = x ran A
30 29 anbi1i A = x ran A x B ran A C x = dom A A = x ran A x B ran A C
31 anass x = dom A A = x ran A x B ran A C x = dom A A = x ran A x B ran A C
32 23 30 31 3bitri y A = x y x B y C x = dom A A = x ran A x B ran A C
33 32 exbii x y A = x y x B y C x x = dom A A = x ran A x B ran A C
34 14 dmex dom A V
35 34 uniex dom A V
36 opeq1 x = dom A x ran A = dom A ran A
37 36 eqeq2d x = dom A A = x ran A A = dom A ran A
38 eleq1 x = dom A x B dom A B
39 38 anbi1d x = dom A x B ran A C dom A B ran A C
40 37 39 anbi12d x = dom A A = x ran A x B ran A C A = dom A ran A dom A B ran A C
41 35 40 ceqsexv x x = dom A A = x ran A x B ran A C A = dom A ran A dom A B ran A C
42 1 33 41 3bitri A B × C A = dom A ran A dom A B ran A C