Metamath Proof Explorer


Theorem elxp4

Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 , elxp6 , and elxp7 . (Contributed by NM, 17-Feb-2004)

Ref Expression
Assertion elxp4 AB×CA=domAranAdomABranAC

Proof

Step Hyp Ref Expression
1 elxp AB×CxyA=xyxByC
2 sneq A=xyA=xy
3 2 rneqd A=xyranA=ranxy
4 3 unieqd A=xyranA=ranxy
5 vex xV
6 vex yV
7 5 6 op2nda ranxy=y
8 4 7 eqtr2di A=xyy=ranA
9 8 pm4.71ri A=xyy=ranAA=xy
10 9 anbi1i A=xyxByCy=ranAA=xyxByC
11 anass y=ranAA=xyxByCy=ranAA=xyxByC
12 10 11 bitri A=xyxByCy=ranAA=xyxByC
13 12 exbii yA=xyxByCyy=ranAA=xyxByC
14 snex AV
15 14 rnex ranAV
16 15 uniex ranAV
17 opeq2 y=ranAxy=xranA
18 17 eqeq2d y=ranAA=xyA=xranA
19 eleq1 y=ranAyCranAC
20 19 anbi2d y=ranAxByCxBranAC
21 18 20 anbi12d y=ranAA=xyxByCA=xranAxBranAC
22 16 21 ceqsexv yy=ranAA=xyxByCA=xranAxBranAC
23 13 22 bitri yA=xyxByCA=xranAxBranAC
24 sneq A=xranAA=xranA
25 24 dmeqd A=xranAdomA=domxranA
26 25 unieqd A=xranAdomA=domxranA
27 5 16 op1sta domxranA=x
28 26 27 eqtr2di A=xranAx=domA
29 28 pm4.71ri A=xranAx=domAA=xranA
30 29 anbi1i A=xranAxBranACx=domAA=xranAxBranAC
31 anass x=domAA=xranAxBranACx=domAA=xranAxBranAC
32 23 30 31 3bitri yA=xyxByCx=domAA=xranAxBranAC
33 32 exbii xyA=xyxByCxx=domAA=xranAxBranAC
34 14 dmex domAV
35 34 uniex domAV
36 opeq1 x=domAxranA=domAranA
37 36 eqeq2d x=domAA=xranAA=domAranA
38 eleq1 x=domAxBdomAB
39 38 anbi1d x=domAxBranACdomABranAC
40 37 39 anbi12d x=domAA=xranAxBranACA=domAranAdomABranAC
41 35 40 ceqsexv xx=domAA=xranAxBranACA=domAranAdomABranAC
42 1 33 41 3bitri AB×CA=domAranAdomABranAC