Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 when the double intersection does not create class existence problems (caused by int0 ). (Contributed by NM, 1-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | elxp5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp | |
|
2 | sneq | |
|
3 | 2 | rneqd | |
4 | 3 | unieqd | |
5 | vex | |
|
6 | vex | |
|
7 | 5 6 | op2nda | |
8 | 4 7 | eqtr2di | |
9 | 8 | pm4.71ri | |
10 | 9 | anbi1i | |
11 | anass | |
|
12 | 10 11 | bitri | |
13 | 12 | exbii | |
14 | snex | |
|
15 | 14 | rnex | |
16 | 15 | uniex | |
17 | opeq2 | |
|
18 | 17 | eqeq2d | |
19 | eleq1 | |
|
20 | 19 | anbi2d | |
21 | 18 20 | anbi12d | |
22 | 16 21 | ceqsexv | |
23 | 13 22 | bitri | |
24 | inteq | |
|
25 | 24 | inteqd | |
26 | 5 16 | op1stb | |
27 | 25 26 | eqtr2di | |
28 | 27 | pm4.71ri | |
29 | 28 | anbi1i | |
30 | anass | |
|
31 | 23 29 30 | 3bitri | |
32 | 31 | exbii | |
33 | eqvisset | |
|
34 | 33 | adantr | |
35 | 34 | exlimiv | |
36 | elex | |
|
37 | 36 | ad2antrl | |
38 | opeq1 | |
|
39 | 38 | eqeq2d | |
40 | eleq1 | |
|
41 | 40 | anbi1d | |
42 | 39 41 | anbi12d | |
43 | 42 | ceqsexgv | |
44 | 35 37 43 | pm5.21nii | |
45 | 1 32 44 | 3bitri | |