Metamath Proof Explorer


Theorem elxp5

Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 when the double intersection does not create class existence problems (caused by int0 ). (Contributed by NM, 1-Aug-2004)

Ref Expression
Assertion elxp5 AB×CA=AranAABranAC

Proof

Step Hyp Ref Expression
1 elxp AB×CxyA=xyxByC
2 sneq A=xyA=xy
3 2 rneqd A=xyranA=ranxy
4 3 unieqd A=xyranA=ranxy
5 vex xV
6 vex yV
7 5 6 op2nda ranxy=y
8 4 7 eqtr2di A=xyy=ranA
9 8 pm4.71ri A=xyy=ranAA=xy
10 9 anbi1i A=xyxByCy=ranAA=xyxByC
11 anass y=ranAA=xyxByCy=ranAA=xyxByC
12 10 11 bitri A=xyxByCy=ranAA=xyxByC
13 12 exbii yA=xyxByCyy=ranAA=xyxByC
14 snex AV
15 14 rnex ranAV
16 15 uniex ranAV
17 opeq2 y=ranAxy=xranA
18 17 eqeq2d y=ranAA=xyA=xranA
19 eleq1 y=ranAyCranAC
20 19 anbi2d y=ranAxByCxBranAC
21 18 20 anbi12d y=ranAA=xyxByCA=xranAxBranAC
22 16 21 ceqsexv yy=ranAA=xyxByCA=xranAxBranAC
23 13 22 bitri yA=xyxByCA=xranAxBranAC
24 inteq A=xranAA=xranA
25 24 inteqd A=xranAA=xranA
26 5 16 op1stb xranA=x
27 25 26 eqtr2di A=xranAx=A
28 27 pm4.71ri A=xranAx=AA=xranA
29 28 anbi1i A=xranAxBranACx=AA=xranAxBranAC
30 anass x=AA=xranAxBranACx=AA=xranAxBranAC
31 23 29 30 3bitri yA=xyxByCx=AA=xranAxBranAC
32 31 exbii xyA=xyxByCxx=AA=xranAxBranAC
33 eqvisset x=AAV
34 33 adantr x=AA=xranAxBranACAV
35 34 exlimiv xx=AA=xranAxBranACAV
36 elex ABAV
37 36 ad2antrl A=AranAABranACAV
38 opeq1 x=AxranA=AranA
39 38 eqeq2d x=AA=xranAA=AranA
40 eleq1 x=AxBAB
41 40 anbi1d x=AxBranACABranAC
42 39 41 anbi12d x=AA=xranAxBranACA=AranAABranAC
43 42 ceqsexgv AVxx=AA=xranAxBranACA=AranAABranAC
44 35 37 43 pm5.21nii xx=AA=xranAxBranACA=AranAABranAC
45 1 32 44 3bitri AB×CA=AranAABranAC