Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqg0el.1 | |
|
Assertion | eqg0el | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqg0el.1 | |
|
2 | eqid | |
|
3 | 2 1 | eqger | |
4 | 3 | adantl | |
5 | eqid | |
|
6 | 2 5 | grpidcl | |
7 | 6 | adantr | |
8 | 4 7 | erth | |
9 | 2 1 5 | eqgid | |
10 | 9 | adantl | |
11 | 10 | eqeq1d | |
12 | eqcom | |
|
13 | 12 | a1i | |
14 | 8 11 13 | 3bitrrd | |
15 | errel | |
|
16 | relelec | |
|
17 | 3 15 16 | 3syl | |
18 | 17 | adantl | |
19 | 10 | eleq2d | |
20 | 14 18 19 | 3bitr2d | |