Metamath Proof Explorer


Theorem eqg0el

Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024)

Ref Expression
Hypothesis eqg0el.1 ˙=G~QGH
Assertion eqg0el GGrpHSubGrpGX˙=HXH

Proof

Step Hyp Ref Expression
1 eqg0el.1 ˙=G~QGH
2 eqid BaseG=BaseG
3 2 1 eqger HSubGrpG˙ErBaseG
4 3 adantl GGrpHSubGrpG˙ErBaseG
5 eqid 0G=0G
6 2 5 grpidcl GGrp0GBaseG
7 6 adantr GGrpHSubGrpG0GBaseG
8 4 7 erth GGrpHSubGrpG0G˙X0G˙=X˙
9 2 1 5 eqgid HSubGrpG0G˙=H
10 9 adantl GGrpHSubGrpG0G˙=H
11 10 eqeq1d GGrpHSubGrpG0G˙=X˙H=X˙
12 eqcom H=X˙X˙=H
13 12 a1i GGrpHSubGrpGH=X˙X˙=H
14 8 11 13 3bitrrd GGrpHSubGrpGX˙=H0G˙X
15 errel ˙ErBaseGRel˙
16 relelec Rel˙X0G˙0G˙X
17 3 15 16 3syl HSubGrpGX0G˙0G˙X
18 17 adantl GGrpHSubGrpGX0G˙0G˙X
19 10 eleq2d GGrpHSubGrpGX0G˙XH
20 14 18 19 3bitr2d GGrpHSubGrpGX˙=HXH