Metamath Proof Explorer


Theorem equivcmet

Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau , metss2 , this theorem does not have a one-directional form - it is possible for a metric C that is strongly finer than the complete metric D to be incomplete and vice versa. Consider D = the metric on RR induced by the usual homeomorphism from ( 0 , 1 ) against the usual metric C on RR and against the discrete metric E on RR . Then both C and E are complete but D is not, and C is strongly finer than D , which is strongly finer than E . (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Hypotheses equivcmet.1 φCMetX
equivcmet.2 φDMetX
equivcmet.3 φR+
equivcmet.4 φS+
equivcmet.5 φxXyXxCyRxDy
equivcmet.6 φxXyXxDySxCy
Assertion equivcmet φCCMetXDCMetX

Proof

Step Hyp Ref Expression
1 equivcmet.1 φCMetX
2 equivcmet.2 φDMetX
3 equivcmet.3 φR+
4 equivcmet.4 φS+
5 equivcmet.5 φxXyXxCyRxDy
6 equivcmet.6 φxXyXxDySxCy
7 1 2 2thd φCMetXDMetX
8 2 1 4 6 equivcfil φCauFilCCauFilD
9 1 2 3 5 equivcfil φCauFilDCauFilC
10 8 9 eqssd φCauFilC=CauFilD
11 eqid MetOpenC=MetOpenC
12 eqid MetOpenD=MetOpenD
13 11 12 1 2 3 5 metss2 φMetOpenCMetOpenD
14 12 11 2 1 4 6 metss2 φMetOpenDMetOpenC
15 13 14 eqssd φMetOpenC=MetOpenD
16 15 oveq1d φMetOpenCfLimf=MetOpenDfLimf
17 16 neeq1d φMetOpenCfLimfMetOpenDfLimf
18 10 17 raleqbidv φfCauFilCMetOpenCfLimffCauFilDMetOpenDfLimf
19 7 18 anbi12d φCMetXfCauFilCMetOpenCfLimfDMetXfCauFilDMetOpenDfLimf
20 11 iscmet CCMetXCMetXfCauFilCMetOpenCfLimf
21 12 iscmet DCMetXDMetXfCauFilDMetOpenDfLimf
22 19 20 21 3bitr4g φCCMetXDCMetX