Metamath Proof Explorer


Theorem eqvrelth

Description: Basic property of equivalence relations. Theorem 73 of Suppes p. 82. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelth.1 φEqvRelR
eqvrelth.2 φAdomR
Assertion eqvrelth φARBAR=BR

Proof

Step Hyp Ref Expression
1 eqvrelth.1 φEqvRelR
2 eqvrelth.2 φAdomR
3 1 eqvrelsymb φARBBRA
4 3 biimpa φARBBRA
5 1 eqvreltr φBRAARxBRx
6 5 impl φBRAARxBRx
7 4 6 syldanl φARBARxBRx
8 1 eqvreltr φARBBRxARx
9 8 impl φARBBRxARx
10 7 9 impbida φARBARxBRx
11 vex xV
12 2 adantr φARBAdomR
13 elecg xVAdomRxARARx
14 11 12 13 sylancr φARBxARARx
15 eqvrelrel EqvRelRRelR
16 1 15 syl φRelR
17 brrelex2 RelRARBBV
18 16 17 sylan φARBBV
19 elecg xVBVxBRBRx
20 11 18 19 sylancr φARBxBRBRx
21 10 14 20 3bitr4d φARBxARxBR
22 21 eqrdv φARBAR=BR
23 1 adantr φAR=BREqvRelR
24 1 2 eqvrelref φARA
25 24 adantr φAR=BRARA
26 2 adantr φAR=BRAdomR
27 elecALTV AdomRAdomRAARARA
28 26 26 27 syl2anc φAR=BRAARARA
29 25 28 mpbird φAR=BRAAR
30 simpr φAR=BRAR=BR
31 29 30 eleqtrd φAR=BRABR
32 30 dmec2d φAR=BRAdomRBdomR
33 26 32 mpbid φAR=BRBdomR
34 elecALTV BdomRAdomRABRBRA
35 33 26 34 syl2anc φAR=BRABRBRA
36 31 35 mpbid φAR=BRBRA
37 23 36 eqvrelsym φAR=BRARB
38 22 37 impbida φARBAR=BR