| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ercgrg.p |
|
| 2 |
|
df-cgrg |
|
| 3 |
2
|
relmptopab |
|
| 4 |
3
|
a1i |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 5 6
|
iscgrg |
|
| 8 |
7
|
biimpa |
|
| 9 |
8
|
simpld |
|
| 10 |
9
|
ancomd |
|
| 11 |
8
|
simprd |
|
| 12 |
11
|
simpld |
|
| 13 |
12
|
eqcomd |
|
| 14 |
|
simpl |
|
| 15 |
|
simprl |
|
| 16 |
12
|
adantr |
|
| 17 |
15 16
|
eleqtrrd |
|
| 18 |
|
simprr |
|
| 19 |
18 16
|
eleqtrrd |
|
| 20 |
11
|
simprd |
|
| 21 |
20
|
r19.21bi |
|
| 22 |
21
|
r19.21bi |
|
| 23 |
14 17 19 22
|
syl21anc |
|
| 24 |
23
|
eqcomd |
|
| 25 |
24
|
ralrimivva |
|
| 26 |
13 25
|
jca |
|
| 27 |
1 5 6
|
iscgrg |
|
| 28 |
27
|
adantr |
|
| 29 |
10 26 28
|
mpbir2and |
|
| 30 |
9
|
simpld |
|
| 31 |
30
|
adantrr |
|
| 32 |
1 5 6
|
iscgrg |
|
| 33 |
32
|
biimpa |
|
| 34 |
33
|
adantrl |
|
| 35 |
34
|
simpld |
|
| 36 |
35
|
simprd |
|
| 37 |
31 36
|
jca |
|
| 38 |
8
|
adantrr |
|
| 39 |
38
|
simprd |
|
| 40 |
39
|
simpld |
|
| 41 |
34
|
simprd |
|
| 42 |
41
|
simpld |
|
| 43 |
40 42
|
eqtrd |
|
| 44 |
39
|
simprd |
|
| 45 |
44
|
r19.21bi |
|
| 46 |
45
|
r19.21bi |
|
| 47 |
46
|
anasss |
|
| 48 |
|
simpl |
|
| 49 |
|
simprl |
|
| 50 |
40
|
adantr |
|
| 51 |
49 50
|
eleqtrd |
|
| 52 |
|
simprr |
|
| 53 |
52 50
|
eleqtrd |
|
| 54 |
41
|
simprd |
|
| 55 |
54
|
r19.21bi |
|
| 56 |
55
|
r19.21bi |
|
| 57 |
48 51 53 56
|
syl21anc |
|
| 58 |
47 57
|
eqtrd |
|
| 59 |
58
|
ralrimivva |
|
| 60 |
43 59
|
jca |
|
| 61 |
1 5 6
|
iscgrg |
|
| 62 |
61
|
adantr |
|
| 63 |
37 60 62
|
mpbir2and |
|
| 64 |
|
pm4.24 |
|
| 65 |
|
eqid |
|
| 66 |
|
eqidd |
|
| 67 |
66
|
rgen2 |
|
| 68 |
65 67
|
pm3.2i |
|
| 69 |
68
|
biantru |
|
| 70 |
64 69
|
bitri |
|
| 71 |
1 5 6
|
iscgrg |
|
| 72 |
70 71
|
bitr4id |
|
| 73 |
4 29 63 72
|
iserd |
|