| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlk.r |
|
| 2 |
1
|
erclwwlkeqlen |
|
| 3 |
1
|
erclwwlkeq |
|
| 4 |
|
simpl2 |
|
| 5 |
|
simpl1 |
|
| 6 |
|
eqid |
|
| 7 |
6
|
clwwlkbp |
|
| 8 |
7
|
simp2d |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
|
simpr |
|
| 11 |
9 10
|
cshwcshid |
|
| 12 |
11
|
expd |
|
| 13 |
12
|
rexlimdv |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
com23 |
|
| 16 |
15
|
3impia |
|
| 17 |
16
|
imp |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
cbvrexvw |
|
| 21 |
17 20
|
sylibr |
|
| 22 |
4 5 21
|
3jca |
|
| 23 |
1
|
erclwwlkeq |
|
| 24 |
23
|
ancoms |
|
| 25 |
22 24
|
imbitrrid |
|
| 26 |
25
|
expd |
|
| 27 |
3 26
|
sylbid |
|
| 28 |
2 27
|
mpdd |
|
| 29 |
28
|
el2v |
|