Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eropr.1 | |
|
eropr.2 | |
||
eropr.3 | |
||
eropr.4 | |
||
eropr.5 | |
||
eropr.6 | |
||
eropr.7 | |
||
eropr.8 | |
||
eropr.9 | |
||
eropr.10 | |
||
eropr.11 | |
||
eropr.12 | |
||
eropr.13 | |
||
eropr.14 | |
||
eropr.15 | |
||
Assertion | eroprf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr.1 | |
|
2 | eropr.2 | |
|
3 | eropr.3 | |
|
4 | eropr.4 | |
|
5 | eropr.5 | |
|
6 | eropr.6 | |
|
7 | eropr.7 | |
|
8 | eropr.8 | |
|
9 | eropr.9 | |
|
10 | eropr.10 | |
|
11 | eropr.11 | |
|
12 | eropr.12 | |
|
13 | eropr.13 | |
|
14 | eropr.14 | |
|
15 | eropr.15 | |
|
16 | 3 | ad2antrr | |
17 | 10 | adantr | |
18 | 17 | fovcdmda | |
19 | ecelqsg | |
|
20 | 16 18 19 | syl2anc | |
21 | 20 15 | eleqtrrdi | |
22 | eleq1a | |
|
23 | 21 22 | syl | |
24 | 23 | adantld | |
25 | 24 | rexlimdvva | |
26 | 25 | abssdv | |
27 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | |
28 | iotacl | |
|
29 | 27 28 | syl | |
30 | 26 29 | sseldd | |
31 | 30 | ralrimivva | |
32 | eqid | |
|
33 | 32 | fmpo | |
34 | 31 33 | sylib | |
35 | 1 2 3 4 5 6 7 8 9 10 11 12 | erovlem | |
36 | 35 | feq1d | |
37 | 34 36 | mpbird | |