Metamath Proof Explorer


Theorem esumpr

Description: Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypotheses esumpr.1 φk=AC=D
esumpr.2 φk=BC=E
esumpr.3 φAV
esumpr.4 φBW
esumpr.5 φD0+∞
esumpr.6 φE0+∞
esumpr.7 φAB
Assertion esumpr φ*kABC=D+𝑒E

Proof

Step Hyp Ref Expression
1 esumpr.1 φk=AC=D
2 esumpr.2 φk=BC=E
3 esumpr.3 φAV
4 esumpr.4 φBW
5 esumpr.5 φD0+∞
6 esumpr.6 φE0+∞
7 esumpr.7 φAB
8 df-pr AB=AB
9 esumeq1 AB=AB*kABC=*kABC
10 8 9 mp1i φ*kABC=*kABC
11 nfv kφ
12 nfcv _kA
13 nfcv _kB
14 snex AV
15 14 a1i φAV
16 snex BV
17 16 a1i φBV
18 disjsn2 ABAB=
19 7 18 syl φAB=
20 elsni kAk=A
21 20 1 sylan2 φkAC=D
22 5 adantr φkAD0+∞
23 21 22 eqeltrd φkAC0+∞
24 elsni kBk=B
25 24 2 sylan2 φkBC=E
26 6 adantr φkBE0+∞
27 25 26 eqeltrd φkBC0+∞
28 11 12 13 15 17 19 23 27 esumsplit φ*kABC=*kAC+𝑒*kBC
29 1 3 5 esumsn φ*kAC=D
30 2 4 6 esumsn φ*kBC=E
31 29 30 oveq12d φ*kAC+𝑒*kBC=D+𝑒E
32 10 28 31 3eqtrd φ*kABC=D+𝑒E