Metamath Proof Explorer


Theorem evl1scvarpwval

Description: Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q=eval1R
evl1varpw.w W=Poly1R
evl1varpw.g G=mulGrpW
evl1varpw.x X=var1R
evl1varpw.b B=BaseR
evl1varpw.e ×˙=G
evl1varpw.r φRCRing
evl1varpw.n φN0
evl1scvarpw.t1 ×˙=W
evl1scvarpw.a φAB
evl1scvarpwval.c φCB
evl1scvarpwval.h H=mulGrpR
evl1scvarpwval.e E=H
evl1scvarpwval.t ·˙=R
Assertion evl1scvarpwval φQA×˙N×˙XC=A·˙NEC

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q=eval1R
2 evl1varpw.w W=Poly1R
3 evl1varpw.g G=mulGrpW
4 evl1varpw.x X=var1R
5 evl1varpw.b B=BaseR
6 evl1varpw.e ×˙=G
7 evl1varpw.r φRCRing
8 evl1varpw.n φN0
9 evl1scvarpw.t1 ×˙=W
10 evl1scvarpw.a φAB
11 evl1scvarpwval.c φCB
12 evl1scvarpwval.h H=mulGrpR
13 evl1scvarpwval.e E=H
14 evl1scvarpwval.t ·˙=R
15 eqid BaseW=BaseW
16 3 15 mgpbas BaseW=BaseG
17 crngring RCRingRRing
18 7 17 syl φRRing
19 2 ply1ring RRingWRing
20 18 19 syl φWRing
21 3 ringmgp WRingGMnd
22 20 21 syl φGMnd
23 4 2 15 vr1cl RRingXBaseW
24 18 23 syl φXBaseW
25 16 6 22 8 24 mulgnn0cld φN×˙XBaseW
26 1 2 3 4 5 6 7 8 11 12 13 evl1varpwval φQN×˙XC=NEC
27 25 26 jca φN×˙XBaseWQN×˙XC=NEC
28 1 2 5 15 7 11 27 10 9 14 evl1vsd φA×˙N×˙XBaseWQA×˙N×˙XC=A·˙NEC
29 28 simprd φQA×˙N×˙XC=A·˙NEC