| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsgsummul.q |
|
| 2 |
|
evlsgsummul.w |
|
| 3 |
|
evlsgsummul.g |
|
| 4 |
|
evlsgsummul.1 |
|
| 5 |
|
evlsgsummul.u |
|
| 6 |
|
evlsgsummul.p |
|
| 7 |
|
evlsgsummul.h |
|
| 8 |
|
evlsgsummul.k |
|
| 9 |
|
evlsgsummul.b |
|
| 10 |
|
evlsgsummul.i |
|
| 11 |
|
evlsgsummul.s |
|
| 12 |
|
evlsgsummul.r |
|
| 13 |
|
evlsgsummul.y |
|
| 14 |
|
evlsgsummul.n |
|
| 15 |
|
evlsgsummul.f |
|
| 16 |
3 9
|
mgpbas |
|
| 17 |
3 4
|
ringidval |
|
| 18 |
5
|
subrgcrng |
|
| 19 |
11 12 18
|
syl2anc |
|
| 20 |
2
|
mplcrng |
|
| 21 |
10 19 20
|
syl2anc |
|
| 22 |
3
|
crngmgp |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
crngring |
|
| 25 |
11 24
|
syl |
|
| 26 |
|
ovex |
|
| 27 |
25 26
|
jctir |
|
| 28 |
6
|
pwsring |
|
| 29 |
7
|
ringmgp |
|
| 30 |
27 28 29
|
3syl |
|
| 31 |
|
nn0ex |
|
| 32 |
31
|
a1i |
|
| 33 |
32 14
|
ssexd |
|
| 34 |
1 2 5 6 8
|
evlsrhm |
|
| 35 |
10 11 12 34
|
syl3anc |
|
| 36 |
3 7
|
rhmmhm |
|
| 37 |
35 36
|
syl |
|
| 38 |
16 17 23 30 33 37 13 15
|
gsummptmhm |
|
| 39 |
38
|
eqcomd |
|