Metamath Proof Explorer


Theorem evlsvarval

Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsvarval.q Q=IevalSubSR
evlsvarval.p P=ImPolyU
evlsvarval.v V=ImVarU
evlsvarval.u U=S𝑠R
evlsvarval.k K=BaseS
evlsvarval.b B=BaseP
evlsvarval.i φIW
evlsvarval.s φSCRing
evlsvarval.r φRSubRingS
evlsvarval.x φXI
evlsvarval.a φAKI
Assertion evlsvarval φVXBQVXA=AX

Proof

Step Hyp Ref Expression
1 evlsvarval.q Q=IevalSubSR
2 evlsvarval.p P=ImPolyU
3 evlsvarval.v V=ImVarU
4 evlsvarval.u U=S𝑠R
5 evlsvarval.k K=BaseS
6 evlsvarval.b B=BaseP
7 evlsvarval.i φIW
8 evlsvarval.s φSCRing
9 evlsvarval.r φRSubRingS
10 evlsvarval.x φXI
11 evlsvarval.a φAKI
12 4 subrgring RSubRingSURing
13 9 12 syl φURing
14 2 3 6 7 13 10 mvrcl φVXB
15 fveq1 g=AgX=AX
16 1 3 4 5 7 8 9 10 evlsvar φQVX=gKIgX
17 fvexd φAXV
18 15 16 11 17 fvmptd4 φQVXA=AX
19 14 18 jca φVXBQVXA=AX