Step |
Hyp |
Ref |
Expression |
1 |
|
expcn.j |
|
2 |
|
oveq2 |
|
3 |
2
|
mpteq2dv |
|
4 |
3
|
eleq1d |
|
5 |
|
oveq2 |
|
6 |
5
|
mpteq2dv |
|
7 |
6
|
eleq1d |
|
8 |
|
oveq2 |
|
9 |
8
|
mpteq2dv |
|
10 |
9
|
eleq1d |
|
11 |
|
oveq2 |
|
12 |
11
|
mpteq2dv |
|
13 |
12
|
eleq1d |
|
14 |
|
exp0 |
|
15 |
14
|
mpteq2ia |
|
16 |
1
|
cnfldtopon |
|
17 |
16
|
a1i |
|
18 |
|
1cnd |
|
19 |
17 17 18
|
cnmptc |
|
20 |
19
|
mptru |
|
21 |
15 20
|
eqeltri |
|
22 |
|
oveq1 |
|
23 |
22
|
cbvmptv |
|
24 |
|
id |
|
25 |
|
simpl |
|
26 |
|
expp1 |
|
27 |
24 25 26
|
syl2anr |
|
28 |
27
|
mpteq2dva |
|
29 |
23 28
|
eqtrid |
|
30 |
16
|
a1i |
|
31 |
|
oveq1 |
|
32 |
31
|
cbvmptv |
|
33 |
|
simpr |
|
34 |
32 33
|
eqeltrrid |
|
35 |
30
|
cnmptid |
|
36 |
1
|
mulcn |
|
37 |
36
|
a1i |
|
38 |
30 34 35 37
|
cnmpt12f |
|
39 |
29 38
|
eqeltrd |
|
40 |
39
|
ex |
|
41 |
4 7 10 13 21 40
|
nn0ind |
|