Metamath Proof Explorer


Theorem expcn

Description: The power function on complex numbers, for fixed exponent N , is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis expcn.j J=TopOpenfld
Assertion expcn N0xxNJCnJ

Proof

Step Hyp Ref Expression
1 expcn.j J=TopOpenfld
2 oveq2 n=0xn=x0
3 2 mpteq2dv n=0xxn=xx0
4 3 eleq1d n=0xxnJCnJxx0JCnJ
5 oveq2 n=kxn=xk
6 5 mpteq2dv n=kxxn=xxk
7 6 eleq1d n=kxxnJCnJxxkJCnJ
8 oveq2 n=k+1xn=xk+1
9 8 mpteq2dv n=k+1xxn=xxk+1
10 9 eleq1d n=k+1xxnJCnJxxk+1JCnJ
11 oveq2 n=Nxn=xN
12 11 mpteq2dv n=Nxxn=xxN
13 12 eleq1d n=NxxnJCnJxxNJCnJ
14 exp0 xx0=1
15 14 mpteq2ia xx0=x1
16 1 cnfldtopon JTopOn
17 16 a1i JTopOn
18 1cnd 1
19 17 17 18 cnmptc x1JCnJ
20 19 mptru x1JCnJ
21 15 20 eqeltri xx0JCnJ
22 oveq1 x=nxk+1=nk+1
23 22 cbvmptv xxk+1=nnk+1
24 id nn
25 simpl k0xxkJCnJk0
26 expp1 nk0nk+1=nkn
27 24 25 26 syl2anr k0xxkJCnJnnk+1=nkn
28 27 mpteq2dva k0xxkJCnJnnk+1=nnkn
29 23 28 eqtrid k0xxkJCnJxxk+1=nnkn
30 16 a1i k0xxkJCnJJTopOn
31 oveq1 x=nxk=nk
32 31 cbvmptv xxk=nnk
33 simpr k0xxkJCnJxxkJCnJ
34 32 33 eqeltrrid k0xxkJCnJnnkJCnJ
35 30 cnmptid k0xxkJCnJnnJCnJ
36 1 mulcn ×J×tJCnJ
37 36 a1i k0xxkJCnJ×J×tJCnJ
38 30 34 35 37 cnmpt12f k0xxkJCnJnnknJCnJ
39 29 38 eqeltrd k0xxkJCnJxxk+1JCnJ
40 39 ex k0xxkJCnJxxk+1JCnJ
41 4 7 10 13 21 40 nn0ind N0xxNJCnJ